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Mitotic checkpoint gene expression is tuned by
codon usage bias
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Abstract

The mitotic checkpoint (also called spindle assembly checkpoint,
SAC) is a signaling pathway that safeguards proper chromosome
segregation. Correct functioning of the SAC depends on adequate
protein concentrations and appropriate stoichiometries between
SAC proteins. Yet very little is known about the regulation of SAC
gene expression. Here, we show in the fission yeast Schizosaccha-
romyces pombe that a combination of short mRNA half-lives and
long protein half-lives supports stable SAC protein levels. For the
SAC genes mad2+ and mad3+, their short mRNA half-lives are
caused, in part, by a high frequency of nonoptimal codons. In con-
trast, mad1+ mRNA has a short half-life despite a higher frequency
of optimal codons, and despite the lack of known RNA-
destabilizing motifs. Hence, different SAC genes employ different
strategies of expression. We further show that Mad1 homodimers
form co-translationally, which may necessitate a certain codon
usage pattern. Taken together, we propose that the codon usage
of SAC genes is fine-tuned to ensure proper SAC function. Our work
shines light on gene expression features that promote spindle
assembly checkpoint function and suggests that synonymous
mutations may weaken the checkpoint.
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Introduction

The spindle assembly checkpoint (SAC; also called mitotic check-

point) is a eukaryotic signaling pathway that delays cell cycle pro-

gression when chromosomes have not yet become properly

attached to microtubules during mitosis (Lara-Gonzalez et al, 2012;

Musacchio, 2015; Kops et al, 2020). Proper function of the SAC

needs appropriate SAC protein concentrations (both too low and too

high expression can be detrimental) and needs adequate stoichiome-

tries between proteins in the pathway (Chung & Chen, 2002; Ryan

et al, 2012; Schuyler et al, 2012; Heinrich et al, 2013; Gross

et al, 2018). This makes it important to quantitatively understand

SAC gene expression. Yet, the expression of these genes has not

been studied in any detail.

The protein network of the SAC, on the other hand, is well

understood. While the SAC is active, it forms the mitotic checkpoint

complex (MCC), which prevents the anaphase-promoting complex

(APC/C) from initiating anaphase (Pines, 2011). A key effector of

the SAC is the Mad1/Mad2 complex, a tetramer of two Mad1 and

two Mad2 molecules (Chen et al, 1999; Sironi et al, 2002; Fig 1A).

Mad1 homodimerizes through a long, parallel intermolecular coiled-

coil at its N-terminus, which is followed by the Mad2-binding motif

and a C-terminal RWD (RING finger-, WD-repeat-, and DEAD-like

proteins) domain (Chen et al, 1999; Sironi et al, 2002; Kim

et al, 2012; Piano et al, 2021; preprint: Fischer et al, 2022). The

Mad1-binding partner Mad2 is a HORMA domain protein (named

after Hop1, Rev7, and Mad2) that can change its conformation

between open (O) and closed (C) (Aravind & Koonin, 1998; Luo et

al, 2002, 2004). To bind Mad1, the C-terminus of Mad2 wraps

around the Mad1 polypeptide similar to a seat belt and Mad2 adopts

the closed conformation (Luo et al, 2002; Sironi et al, 2002). This

results in a tight complex with no measurable dissociation rate in

vitro (Chen et al, 1999; Sironi et al, 2001; Vink et al, 2006). If and

to what extent the formation of the intricate Mad1/Mad2 complex is

aided by other factors is unknown.

Through a different surface, Mad2 can form heterodimers

between its two conformations (O-C) (Mapelli et al, 2007). Dimer-

ization of Mad1/C-Mad2 with O-Mad2 facilitates binding of this O-

Mad2 molecule to the APC/C activator Cdc20 (Slp1 in Schizosac-

charomyces pombe) (De Antoni et al, 2005; Piano et al, 2021;

preprint: Fischer et al, 2022). O-Mad2 changes its conformation in

the process, forming C-Mad2/Cdc20 through the same seat belt

type of binding (Luo et al, 2002). Subsequent binding of BubR1

(Mad3 in yeast) to C-Mad2/Cdc20 results in the mitotic checkpoint

complex (MCC) (Sudakin et al, 2001; Chao et al, 2012). The MCC

then inhibits the APC/C to block anaphase (Pines, 2011; Alfieri et

al, 2016).
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Because the SAC plays a central role in preventing chromosome

mis-segregation and because persistent chromosome mis-

segregation is a driver of tumor evolution, SAC malfunction is

suspected to contribute to carcinogenesis (Gordon et al, 2012; Funk

et al, 2016). Mouse models have shown that impairing the SAC pro-

motes chromosome mis-segregation and tumor formation (Baker
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Figure 1. Low steady-state mRNA numbers of checkpoint genes mad1+, mad2+, and mad3+.

A Overview of the interactions between Mad1, Mad2, and Mad3.
B Schematic of marker-less GFP-tagging at the endogenous locus and representative live-cell images of Mad1-, Mad2-, and Mad3-GFP strains (average intensity projec-

tions).
C Representative images of single-molecule mRNA FISH (smFISH) staining of S. pombe using probes against GFP (red). DNA was stained with DAPI (blue). The gamma-

value was adjusted to make the cytoplasm visible; cell shapes are outlined in blue.
D Frequency distribution of mRNA numbers per cell determined by smFISH; combined data from 3, 4, and 5 experiments, respectively, shown separately in Fig EV1C;

n, number of cells. Curves show fit to a Poisson distribution.
E Frequency distribution of mRNA numbers per cell using FISH probes against the endogenous genes and using either strains expressing the GFP-tagged gene or the

endogenous, untagged gene. Curves show fit to a Poisson distribution. The difference for mad1+ is statistically significant, that for mad2+ is not (Fig EV1E). A lower
mRNA number for untagged mad1+ was also observed in an independent strain.

F Co-staining by smFISH using probes against mad1+ and GFP either in a strain expressing mad1+-GFP as a positive control or in a strain expressing wild-type mad1+

and mad2+-GFP. Cytoplasmic mad1+ (green) or GFP mRNA spots (magenta) were quantified as co-localizing or not with the respective other. For the mad1+-GFP
strain, 544 cells and a total of 1,641 mad1 spots and 1,839 GFP spots were analyzed; 48 cells were not considered as they did not contain at least one spot of each
type in the cytoplasm. For the mad1+ mad2+-GFP strain, 571 cells and a total of 1,107 mad1 spots and 1,537 GFP spots were analyzed; 158 cells were not considered
since they did not contain at least one spot of each type in the cytoplasm.

Source data are available online for this figure.
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et al, 2005; Holland & Cleveland, 2009; Schvartzman et al, 2010).

Completely abolishing the SAC, however, is detrimental to human

cells (Dobles et al, 2000; Kops et al, 2004; Michel et al, 2004;

Schukken et al, 2021), and suppression of the SAC may in fact be a

successful therapeutic strategy against some cancer types (Cohen-

Sharir et al, 2021; Quinton et al, 2021). Together, these results

indicate that tuning SAC function can make the difference between

normal growth, cancerous growth, and cell death.

Although the SAC network has been studied in much detail

from a protein-centric view, little is known about SAC gene expres-

sion. Understanding this regulatory layer is important, because the

changes in SAC protein concentrations can cause SAC malfunction

—at least partly because proper stoichiometries, such as between

Mad1 and Mad2, are important for function (Chung & Chen, 2002;

Ryan et al, 2012; Schuyler et al, 2012; Heinrich et al, 2013; Gross

et al, 2018). Here, using fission yeast (Schizosaccharomyces

pombe), we study the mRNA layer of SAC gene expression and

provide evidence that a combination of short mRNA and long pro-

tein half-lives ensures a stable concentration of SAC proteins over

time and between cells. Our findings indicate that codon usage

bias in mad2+ and mad3+, but not mad1+, contributes to their

short mRNA half-lives, and that the coding sequence of mad1+ car-

ries other features that influence expression of this gene. We

provide evidence that Mad1 homodimers form co-translationally,

which may necessitate a certain codon usage pattern. Overall, our

findings shine light on gene expression features that promote SAC

function and raise the possibility that synonymous mutations may

impair the SAC.

Results

SAC mRNA numbers are approximately Poisson-distributed with
means of two to four per cell

We previously quantified the concentration of SAC proteins fused to

green fluorescent protein (GFP) in S. pombe and determined protein

concentrations in a range between 30 and 150 nM with strikingly lit-

tle intercell variability (i.e., low gene expression “noise”) (Heinrich

et al, 2013). In these strains, GFP had been fused by traditional tag-

ging, changing the endogenous 30 UTR to that of the Saccharomyces

cerevisiae ADH1 gene and appending an antibiotic-resistance gene,

which both may alter gene expression. To avoid such effects, we

now employed CRISPR/Cas9-mediated scarless genome editing

(Jacobs et al, 2014). We fused ymEGFP (yeast codon-optimized,

monomeric enhanced GFP; in the following just “GFP”) to the SAC

genes mad1+, mad2+, and mad3+ without any change to the sur-

rounding sequences (Fig 1B). Immunoblots showed concentrations

broadly similar to the previous strains (Fig EV1A), and strains were

not sensitive to the microtubule drug benomyl, suggesting that SAC

functionality was maintained (Fig EV1B).

The mean SAC mRNA numbers per cell, determined by single-

molecule mRNA fluorescence in situ hybridization (FISH) with

probes targeting GFP, were in the range of 3 to 4, even lower than

the means of 4.5 to 6 that we had previously observed (Figs 1C and

D, and EV1C; Heinrich et al, 2013). This indicates that the tradi-

tional tagging strategy indeed influenced gene expression. To test

whether the expression in the new strains resembles endogenous

expression, we used FISH probes against endogenous mad1+ and

mad2+ and compared strains expressing the endogenous untagged

gene with strains expressing the GFP-tagged gene. For mad2+, the

mean mRNA number for untagged and tagged mad2+ was compara-

ble (Figs 1E and EV1E). However, untagged mad1+ showed even

fewer mRNA molecules than mad1+-GFP (Fig 1E and EV1E), sug-

gesting that the mere addition of GFP, without any changes in the

UTRs or surrounding sequences can change expression of mad1+.

[Note that for mad2+, the efficiency of the gene-specific probe was

slightly lower than the GFP probe (Fig EV1D, both probes measured

on mad2+-GFP), but this is not expected to influence the conclusion

in an experiment that only uses the gene-specific probe (Fig 1E).

While the mean mRNA numbers per cell for the GFP-tagged

genes were in the range of 3 to 4, the numbers in single cells ranged

from 0 to around 9 (Fig 1D and E). As expected (Zhurinsky et

al, 2010; Padovan-Merhar et al, 2015; Sun et al, 2020), smaller cells

had on average lower numbers than larger cells (Fig EV1E). How-

ever, even cells of the same size could differ in mRNA number by 8

or more (Fig EV1E). The spread of mRNA numbers in the cell popu-

lation was well approximated by a Poisson distribution (Fig 1D and

E). A Poisson distribution is expected from constitutive expression,

where mRNA is synthesized and degraded in uncorrelated events

but with a uniform probability over time. In contrast, “bursty”

expression (characterized by alterations of promoter activity and

inactivity) would result in an even wider distribution (Zenklusen et

al, 2008). These results therefore indicate that SAC mRNA numbers

vary considerably, but that this variation is within the expected

range for constitutive expression.

mad1+ and mad2+ mRNAs do not co-localize in the cytoplasm

The mRNA FISH data also provide the location of mRNAs. Recent

work has suggested that co-translational assembly of protein com-

plexes is more prevalent than previously thought (Schwarz &

Beck, 2019). How the stable Mad1/Mad2 complex assembles is

unknown. When heterodimeric complexes assemble while both sub-

units are being translated, their mRNAs will co-localize (Panasenko

et al, 2019). We asked whether this is the case for Mad1 and Mad2.

We stained mad1+ mRNA (using a mad1+ probe) and mad2+-GFP

mRNA (using a GFP probe) in the same cells, where both were

expressed from their respective endogenous loci. While a mad1+-

GFP strain, used as positive control, showed strong co-localization

of the mad1+ and GFP probes, there was no evidence for co-

localization of mad1+ and mad2+-GFP mRNA (Fig 1F). This absence

of mRNA co-localization excludes that the Mad1/Mad2 complex

forms by synchronous co-translational assembly. We will discuss

other possibilities below.

Low protein noise can be explained through long protein and
short mRNA half-lives

To analyze if and to what extent the strong mRNA variation propa-

gates to the protein level, we quantified GFP-tagged Mad1, Mad2,

and Mad3 in single cells using our “Pomegranate” image analysis

pipeline, which allows for 3D segmentation (Appendix Fig S1 and

S2A; Baybay et al, 2020). To subtract autofluorescence, we mixed

the GFP-expressing cells with cells not expressing GFP (Appendix

Fig S1). Unlike for the mRNA, we observed little cell-to-cell
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variability in the SAC protein concentrations (Fig 2A). As a compar-

ison, we imaged a “noisy” S. pombe protein, Nmt1 (Saint et

al, 2019), which indeed showed pronounced cell-to-cell variability

(Fig 2A; Appendix Fig S1C). A measure of variability is the coeffi-

cient of variation (CV; standard deviation divided by mean). The

CVs for Mad1-, Mad2-, or Mad3-GFP were in the range of 0.2,

whereas that for Nmt1-GFP was around 0.5 (Fig 2A).

This raised the question how the protein concentrations of Mad1,

Mad2, and Mad3 can be homogeneous across the population when

the mRNA numbers are highly variable. We considered a simple

gene expression model with a constitutively active promoter, and

different mRNA and protein synthesis and degradation rates (see

Methods for details) that would all yield mean mRNA and protein

numbers similar to those that we observe for mad1+, mad2+, and

mad3+. The longer the mRNA half-life, the longer a state of low or

high mRNA numbers persists; and the shorter the protein half-life,

the more closely protein concentrations follow the mRNA numbers

(Fig 2B). Hence, long mRNA half-lives and short protein half-lives

favor noise, whereas short mRNA half-lives and long protein half-

lives suppress noise (Fig 2B and C; Appendix Fig S2B). In the latter

case, the long persistence time of proteins buffers fast fluctuations

at the mRNA level (Fig 2B).

To ascertain whether this prediction is met by SAC genes, we

measured mRNA and protein half-lives. We determined mRNA half-

life by metabolic labeling followed by depletion of the labeled pool

and quantification of the remaining pool by quantitative PCR. The
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Figure 2. The checkpoint genes mad1+, mad2+, and mad3+ combine short mRNA and long protein half-lives, explaining low noise.

A Cellular protein noise (coefficient of variation, CV = std / mean) in live-cell microscopy images of S. pombe; n = 7 images (Nmt1-GFP), 11 (Mad1-GFP), 19 (Mad2-GFP),
10 (Mad3-GFP); single images had 16–79 GFP-positive and 6–94 GFP-negative (control) cells. Boxplots show median and interquartile range (IQR); whiskers extend to
values no further than 1.5 times the IQR from the first and third quartile, respectively. Mad1, Mad2, and Mad3 all showed significantly lower noise than Nmt1 (Wil-
coxon rank sum test; all P < 0.001).

B Simulations of stochastic gene expression noise from selected mRNA/protein half-life combinations assuming a constantly active promoter (see Methods). Synthesis
rates were set to obtain a mean mRNA number of 4 per cell, and a mean protein number of 6,000 per cell. The x-axis of each graph shows time, the y-axis shows
mRNA number per cell (blue) or protein number per cell (black).

C Theoretical prediction for the coefficient of variation (CV = std/mean) of the protein number per cell, assuming different mRNA and protein half-lives, using the same
underlying model as in B. Synthesis rates were adjusted to maintain a mean mRNA number per cell of 3.5, and a mean protein number per cell of 6,000 (approx.
100 nM).

D mRNA abundances by qPCR following metabolic labeling and removal of the labeled pool (two independent experiments). Lines are regression curves from
generalized linear mixed model fits, excluding the measurements at t = 0 in order to accommodate for noninstantaneous labeling by 4tU. Act1+ and ecm33+ were
used as long and short half-life controls, respectively; qPCR was performed for the endogenous mRNAs. Half-lives (95% confidence interval): mad1+ 5.6 min (4.3–8.4),
mad2+ 7.7 min (6.2–10.4), mad3+ 5.2 min (4.3–6.9), act1+ 61.8 min (37.2–172.3), ecm33+ 5.0 min (4.5–5.7).

E Protein abundances after translation shut-off with cycloheximide (CHX); n = 3 experiments, error bars = std. Lines indicate fit to a one-phase exponential decay.
Cdc2 and Cdc13 were used as long and short half-life controls, respectively. Immunoblots for the endogenous proteins (no tag). A representative experiment shown in
Appendix Fig S2E.

Source data are available online for this figure.
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mRNA half-lives for mad1+, mad2+, and mad3+ were all in the

range of a few minutes (mad1+: 5.6 min, mad2+: 7.7 min, and

mad3+: 5.2 min) (Fig 2D). This was consistent with the half-lives

determined for these genes in a large-scale study using metabolic

labeling (Appendix Fig S2D) (Eser et al, 2016). RNA half-lives have

been notoriously difficult to measure, with much variability

between studies (Carneiro et al, 2019; preprint: Agarwal & Kel-

ley, 2022). An earlier S. pombe study (Hasan et al, 2014) found

longer half-lives across the entire transcriptome, but even in this

study, SAC genes were at the lower end of mRNA half-lives

(Appendix Fig S2D). As controls, we measured two unrelated

genes with reportedly long and short half-life (Eser et al, 2016),

act1+ and ecm33+, which behaved as expected (Fig 2D). We deter-

mined protein half-lives by translation shut-off using cyclohex-

imide, followed by immunoblotting. The half-lives of Mad1, Mad2,

and Mad3 were in the range of many hours, considerably longer

than the typical S. pombe cell cycle of 2.5 h (Fig 2E; Appendix Fig

S2E) and broadly consistent with previous data (Sczaniecka

et al, 2008; Horikoshi et al, 2013; Christiano et al, 2014). This large

difference in mRNA and protein half-lives explains the low cell-to-

cell variability in protein concentration despite the considerable

variation in mRNA numbers (Fig 2C). The short mRNA half-life is

therefore important to mitigate the effect of the large variation in

mRNA numbers.

mad2+ and mad3+ have low codon stabilization coefficients

One of the determining factors for mRNA half-life is codon optimal-

ity, which positively correlates with mRNA stability in several

eukaryotes (Presnyak et al, 2015; Hanson & Coller, 2018; Narula et

al, 2019; Wu et al, 2019; Forrest et al, 2020). The codon stabiliza-

tion coefficient (CSC) describes the correlation between the occur-

rence of a codon in mRNA transcripts and experimentally

determined mRNA stability (Presnyak et al, 2015). The CSC for a

codon is positive if this codon is overrepresented in stable mRNAs

and negative if overrepresented in unstable mRNAs. Similar to Hari-

gaya & Parker (2016), we determined CSC values for S. pombe

based on large-scale mRNA half-life measurements (Hasan et

al, 2014; Eser et al, 2016). The CSC value for each gene (CSCg) is

the arithmetic mean of the CSC values of all codons in that gene. As

had been seen before (Presnyak et al, 2015; Harigaya &

Parker, 2016), the CSCg correlated with other measures of codon

optimality such as the percentage of optimal codons or the tRNA

adaptation index (tAI) (Appendix Fig S3A). As the SAC genes had

short mRNA half-lives, we expected them to have low CSCg values.

Indeed, mad2+ and mad3+ were among the 20% of protein-coding

genes with the lowest CSCg values (Fig 3A and B). This result was

independent of which large-scale mRNA half-life data or which cor-

relation parameter was used (Appendix Fig S3C and D). These

results raise the interesting possibility that codon usage in mad2+

and mad3+ contributes to their short mRNA half-life. The mad1+

gene showed different characteristics, which we will discuss below.

Codon-optimization increases the mRNA concentration of mad2+

and mad3+

To test if codon usage contributes to the short mRNA half-lives, we

codon-optimized mad2+ and mad3+ and inserted the codon-

optimized sequence at the respective endogenous locus (Fig 3C;

Appendix Fig S3B and F). The GFP tag, which remained unchanged,

mitigated but did not abolish the effect of the codon-optimization on

the CSCg value of the fusion genes (Appendix Fig S3B). An increase

in mRNA half-life should result in an increased steady-state mRNA

number if synthesis was unchanged. Indeed, we found an increased

mRNA number for codon-optimized mad2 and mad3 compared with

the wild-type gene (Fig 3D). Cytoplasmic mRNAs showed a 27%

increase (Fig EV3). For mad2, the increase was restricted to the

cytoplasm and not observed in the nucleus, strongly suggesting sta-

bilization of the mRNA (Fig EV3).

In S. cerevisiae, the RNA helicase Dhh1 (S. pombe Ste13) is

involved in specifically lowering the mRNA half-life of genes with a

high fraction of nonoptimal codons (Radhakrishnan et al, 2016;

Cheng et al, 2017; Webster et al, 2018; Buschauer et al, 2020). Con-

sistently, we observed that the deletion of ste13+ significantly

increased mad2+ and mad3+ mRNA half-lives—from about 8 to

14 min for mad2+, and 5 to 10 min for mad3+ (Figs 3E and EV2).

This indicates that mad2+ and mad3+ mRNA are subject to Ste13-

mediated degradation. The steady-state mRNA numbers were not

greatly affected by ste13+ deletion (Figs 3D and EV2B, and EV3).

This is consistent with a global “buffering” of mRNA concentrations

that has been observed in budding yeast when mRNA degradation

rates or synthesis rates are globally reduced (Haimovich et al, 2013;

Sun et al, 2013; Timmers & Tora, 2018; Fischer et al, 2020). Buffer-

ing has been found to be a global phenomenon, not observed when

the mRNA of single genes is stabilized (Garcia-Martinez et al, 2021).

This may explain why mRNA numbers increased after codon-

optimization, but not after ste13+ deletion. Overall, our results sup-

port the hypothesis that nonoptimal codons in mad2+ and mad3+

contribute to the short mRNA half-life of these genes.

Codon-optimization, but not ste13+ deletion, increases the
protein concentration of Mad2 and Mad3

To ask whether the consequences of codon-optimization propagate

to the protein level, we quantified Mad2- and Mad3-GFP protein

expressed from the wild-type or codon-optimized genes. Both

immunoblotting (Fig 4A and C) and fluorescence microscopy (Fig 4

D and E) showed an increase in protein concentration after codon-

optimization, which can partly be explained by the increase in

mRNA (Fig 3) and might be enhanced by an increased translation

efficiency. In contrast, the Mad2 and Mad3 protein concentrations

in ste13Δ cells remained largely stable when analyzed by

immunoblotting (Fig 4B and C), consistent with the mRNA results

(Fig 3D). Altogether, these data support that codon usage bias

toward nonoptimal codons in mad2+ and mad3+ lowers their pro-

tein concentration but supports a short mRNA half-life, thereby

establishing a gene expression pattern that lowers cell-to-cell vari-

ability.

mad1+ expression regulation differs from that of mad2+

and mad3+

The mad1+ gene shares a short mRNA half-life with mad2+ and

mad3+ (Fig 2D). Different from mad2+ and mad3+, though, mad1+

has a higher fraction of optimal codons and a CSCg value above the

median of all protein-coding S. pombe genes (Fig 3A and B;
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◀ Figure 3. Codon-optimization increases the steady-state mRNA numbers of mad2 and mad3.

A The mean CSC value for each S. pombe gene (CSCg) relative to protein number per cell by mass spectrometry (Carpy et al, 2014). CSC was determined using the mRNA
half-life data by Eser et al (2016) as described in Methods. Colored dots highlight proteins of interest. For Mad2 and Bub1, no protein abundance data was available.

B Cumulative frequency distribution of the CSCg values for protein-coding S. pombe genes. The position of spindle assembly checkpoint genes is highlighted.
C Schematic of the mad2+ and mad3+ genes. Regions coding for important structural features are highlighted. Black lines in the bottom graph indicate synonymous

codon changes in the codon-optimized version.
D Scatter plots of whole-cell RNA counts versus cell length. Solid lines are regression curves from generalized linear mixed model fits (gray: wild type, black: codon-

optimized or ste13Δ). Dashed lines: 95% bootstrap confidence bands for the regression curves. Model estimates of the ratio relative to wild-type mRNA are included
with bootstrap 95% confidence interval in brackets. Two to five replicates per genotype.

E Time course of RNA abundances by qPCR following metabolic labeling and removal of the labeled pool (two independent experiments). Solid lines: regression curves
from generalized linear mixed model fits (dark = ste13+, light = ste13Δ), excluding t = 0 to accommodate for non-instantaneous labeling by 4tU. Shaded area: 95%
bootstrap confidence band for ste13+; dashed lines: 95% bootstrap confidence band for ste13Δ. Half-life estimates are included with 95% bootstrap confidence inter-
vals in brackets. See Fig EV2C for additional statistics. The ste13+ data are the same as in Fig 2.

Source data are available online for this figure.
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Figure 4. Codon-optimization increases the protein concentrations of Mad2 and Mad3.

A Immunoblot of S. pombe protein extracts from cells expressing wild-type (WT) or codon-optimized (co) Mad2-GFP or Mad3-GFP probed with antibodies against GFP
and Cdc2 (loading control). Lanes 3–5 are a 1:1 dilution series of the extract from cells expressing the codon-optimized version.

B Immunoblot of protein extracts from wild-type (WT) or ste13Δ strains probed with antibodies against Mad2, Mad3, and tubulin (loading control). A 1:1 dilution series
was loaded for quantification.

C Estimates of the protein concentration relative to wild-type conditions from experiments such as in (A) and (B). Bars are experimental replicates, dots are technical
replicates. Two-sided t-tests: P = 0.03 (Mad2-co), 0.004 (Mad3-co), 0.82 (Mad2 ste13Δ), 0.15 (Mad3 ste13Δ).

D Whole-cell GFP concentration from individual live-cell fluorescence microscopy experiments (a.u., arbitrary units). Boxes show median and interquartile range (IQR);
whiskers extend to values no further than 1.5 times the IQR from the first and third quartile, respectively. Codon-optimized concentration significantly higher than
wild type for both genes (generalized linear mixed model). Mad2-GFP: n = 468 and 413; Mad2-co-GFP: n = 206 and 366; Mad3-GFP: n = 224 and 127; Mad3-co-GFP:
n = 160, 450 and 212 cells.

E Representative images from one of the experiments in (D). A single Z-slice is shown. Cells are outlined in gray.

Source data are available online for this figure.
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Appendix Fig S3A and B). This was surprising because we expected

similar features within the SAC network. Unlike for mad2 and

mad3, the mad1 mRNA number did not increase after codon-

optimization, but rather decreased slightly (Figs 5A and B, and

EV5). A second codon-optimized mad1 whose sequence was consid-

erably different from the first (77% nucleotide identity; Appendix

Fig S3F and Appendix Table S3) showed the same trend (Figs EV4A

and EV5). Similar to mad2+ and mad3+, mad1+ mRNA half-life was

still prolonged in ste13Δ cells (from 6 to 10 min; Fig 5C), but unlike

for mad2+ and mad3+ not reaching statistical significance (Fig

EV4E). Thus, the short mad1+ mRNA half-life is less dependent on

codon usage bias and Ste13, and hence, different modes of regula-

tion bring about the short mRNA half-life of these SAC genes.

The ecm33+ control mRNA was strongly stabilized in ste13+-

deleted cells (Figs 5C and EV4E), despite a high fraction of optimal

codons in ecm33+ (Fig 5D). This highlights that—despite some over-

all correlation—the relationships between codon optimality, mRNA

half-life, and susceptibility to ste13+ deletion are far from predictable

(Fig EV4F) (He et al, 2018). It is worth noting that Ecm33 is a

plasma membrane-binding protein. The budding yeast and human

orthologs of Ste13 (Dhh1 and DDX6, respectively) influence transla-

tion and mRNA degradation of membrane-binding proteins, and

budding yeast Dhh1 has been shown to bind Ecm33 and its paralog

Pst1 (Jungfleisch et al, 2017; Weber et al, 2020). If conserved in S.

pombe, this could explain the strong destabilizing effect of Ste13 on

ecm33+ mRNA.

Codon-optimization of mad1+ decreases its protein
concentration

Unlike Mad2- and Mad3-GFP, whose protein concentration

increased after codon-optimization, that of Mad1-GFP decreased,

both by immunoblotting (Fig 6A and C) and by fluorescence micro-

scopy (Fig 6D and E). Mad1 protein formed from the codon-

optimized mRNA had a similar stability to that formed from wild-

type mRNA (Appendix Fig S4A and B) and still bound Mad2

(Appendix Fig S4C). The reduction, rather than increase, in protein

concentration after codon-optimization of mad1+ corroborates that

the codon usage pattern of mad1+ serves a different purpose than

that of mad2+ and mad3+. Deletion of ste13+ had hardly any influ-

ence on the Mad1 protein concentration (Fig 6B and C), consistent

with the largely unchanged mRNA concentration (Fig 5B).

We previously found that SAC function was well preserved when

Mad1 levels were lowered to 30% (Heinrich et al, 2013). Consis-

tently, we did not observe an obvious growth defect when cells

expressing codon-optimized mad1 were grown in the presence of

the microtubule drug benomyl (Fig EV1B), and we did not observe

a SAC defect in a live-cell imaging assay where microtubules were

depolymerized (Appendix Fig S4D and E). To test SAC function in a

more sensitive assay, we deleted the gene for the microtubule-

interacting protein Alp7 (Sato et al, 2003). This also activates the

SAC, but less robustly than microtubule-depolymerization. Using

this assay, cells expressing codon-optimized mad1 tended to exit

mitosis more quickly than cells expressing wild-type mad1+ (Fig 6F;

Appendix Fig S4F). The difference did not reach the level of statisti-

cal significance but was reproducible with independent strains. This

suggests that synonymous codon changes, without any change in

the protein sequence, can impair SAC function.

Upstream and downstream sequences of mad1+ are insufficient
for proper expression

The lower mRNA concentration after mad1 codon-optimization

(Figs 5B and EV4A) suggested that the concentration of mad1+

mRNA is not purely determined by regulatory sequences upstream

and downstream of the coding sequence. This is supported by our

observation that merely fusing GFP to mad1+, without altering sur-

rounding sequences, significantly increases its mRNA number

(Figs 1E and EV1E). Further supporting this notion, but rather sur-

prisingly, we found that replacing the mad1+ coding sequence with

GFP produced neither significant amounts of mRNA nor protein

(Appendix Fig S5A and B). This again contrasted with the mad2+

and mad3+ genes, which produced comparable amounts of mRNA

and protein when the original coding sequence was replaced with

GFP (Appendix Fig S5C and D). Hence, the sequences surrounding

the mad1+ coding sequence are insufficient to establish mad1+-like

expression, and contributions from the coding sequence are

required. Preserving the first 66 or 108 base pairs of mad1+ partly

rescued both mRNA and protein levels but not completely

(Appendix Fig S5A and B). While this suggests that the 50 region of

the mad1+ coding sequence carries signals that are important for

mRNA synthesis or stabilization, some other genes contain

sequences that can compensate. Introducing an nmt1+-GFP fusion

gene or fusions between S. cerevisiae GCN4 and N-terminally trun-

cated versions of S. pombe mad1+ (Heinrich et al, 2014) allowed for

expression from the mad1+ locus (Appendix Fig S5A and B). What

these genes share, that GFP does not, remains unclear.

Altogether, these results indicate that mad1+ expression has

some unique aspects: mad1+ uses a different mode for reducing

mRNA half-life than mad2+ or mad3+, and its coding sequence car-

ries elements that help transcribe, stabilize, or translate RNA.

Mad1 homodimers assemble co-translationally

We considered whether mad1+ may have a certain codon usage

pattern to facilitate protein production or complex formation (Liu

et al, 2021). Mad1 forms a homodimer through a long N-terminal

coiled-coil (Sironi et al, 2002; Piano et al, 2021), but—except in a

very recent genome-wide study (Bertolini et al, 2021)—how this

homodimer forms has not been examined. If formation was co-

translational rather than post-translational, this may require a cer-

tain pattern of codon usage for proper complex formation. To

assess dimer formation, we examined cells expressing both tagged

and untagged Mad1. If Mad1 dimer formation was post-

translational, it should be possible to observe interactions between

tagged and untagged Mad1. However, in haploid strains express-

ing a C-terminally GFP-tagged and an untagged mad1+ gene, a

GFP immunoprecipitation almost exclusively precipitated Mad1-

GFP, but not untagged Mad1 (Fig 7A). In contrast, a Mad1

immunoprecipitation precipitated Mad1-GFP and Mad1 in approxi-

mately the same ratio in which they were present in the extract.

These experiments used a monomeric version of GFP. Thus, it is

unlikely that this pattern is driven by dimerization of GFP. With

two versions of Mad1 being expressed, a slight bias toward the

form that is being pulled down would be expected even when

heterodimers between these forms were generated with equal like-

lihood as homodimers (Fig EV6A). At a 1:1 ratio of the isoforms
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in the extract, a 2:1 ratio would be expected in an immunoprecipi-

tation or pull-down. However, the bias that we observed always

exceeded the expected bias, usually vastly (Figs 7 and EV6).

Hence, we propose that Mad1 forms homodimers between

isoforms more efficiently than heterodimers. This is most easily

explained by co-translational assembly of Mad1 dimers from the

nascent chains of two ribosomes translating mad1+ from the same

mRNA molecule (Fig 7B).
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Figure 5. Codon-optimization and ste13+ deletion do not significantly affect the steady-state mRNA number of mad1+.

A Schematic of the mad1+ gene. Regions coding for important structural features are highlighted. Black lines in the bottom graph indicate synonymous codon changes
in the codon-optimized version.

B Scatter plots of whole-cell mRNA counts versus cell length. Solid lines are regression curves from generalized linear mixed model fits (gray: wild type, black: codon-
optimized or ste13Δ). Dashed lines: 95% bootstrap confidence bands for the regression curves. Model estimates of the ratio relative to wild-type mRNA are included
with bootstrap 95% confidence interval in brackets. Two to three replicates per genotype.

C Time course of RNA abundances by qPCR following metabolic labeling and removal of the labeled pool (two independent experiments). Solid lines: regression curves
from generalized linear mixed model fits (dark = ste13+, light = ste13Δ), excluding t = 0 to accommodate for non-instantaneous labeling by 4tU. Shaded area: 95%
bootstrap confidence band for ste13+; dashed lines: 95% bootstrap confidence band for ste13Δ. Half-life estimates are included with 95% bootstrap confidence inter-
vals in brackets. See Fig EV4E for additional statistics. The ste13+ data are the same as in Fig 2.

D Comparison between mean CSC values for selected genes (CSCg) and mRNA half-life measured with or without deletion of ste13+. mRNA half-life estimates from
Figs 3E and 5C, and EV4D.

Source data are available online for this figure.
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We further corroborated this finding using diploid strains

expressing Mad1-GFP and Mad1-Strep from the two endogenous

loci. Again, a GFP-immunoprecipitation isolated Mad1-GFP but

very little Mad1-Strep, whereas a Strep pull-down isolated Mad1-

Strep but very little Mad1-GFP (Figs 7C and EV6B). We obtained

similar results after in vitro translation of Mad1 (Fig EV6C): when

Mad1-GFP and Mad1-flag-His were co-translated in a rabbit retic-

ulocyte lysate, a subsequent GFP immunoprecipitation isolated

very little Mad1-flag-His, and a His pull-down isolated very little

Mad1-GFP. Heterodimerization between C-terminal Mad1 frag-

ments has previously been reported in an in vitro translation

(Kim et al, 2012). However, in our experiments, even C-terminal

fragments showed a strong bias toward the form that was being

precipitated, both in yeast extracts and after in vitro translation

(Appendix Fig S6). To exclude that heterodimer formation

between Mad1-GFP and untagged Mad1 was nonphysiologically

prevented by the large GFP tag, we tested a combination of

Mad1-flag-His and untagged Mad1 in an in vitro translation.

Again, His pull-down almost exclusively isolated Mad1-flag-His,

whereas a Mad1 immunoprecipitation isolated both forms in

approximately the same ratio in which they were present in the

extract (Fig 7D).

To further test the idea that Mad1 dimer assembly occurs on a

single mRNA molecule (Fig 7B), we examined mad1+ mRNA. Con-

sistent with few heterodimers on the protein level, we did not

observe co-localization between two different mad1+ isoform

mRNAs present in the same cell (Fig 7E). Intensity measurements of

mRNA FISH spots suggested the presence of single mRNAs, not

mRNA doublets, when both untagged mad1+ and mad1+-GFP were

expressed and mRNA spots were detected with a mad1+ probe

(Fig 7E, left; EV6D). Further supporting this finding, the number of

mad1+ mRNA spots that were co-localizing with GFP spots (indicat-

ing mad1+-GFP) or not (indicating untagged mad1+) was identical

in strains expressing one or both isoforms (Fig 7E, right), indicating

that the isoforms do not co-localize. We additionally tested the pos-

sibility that mRNAs of the same isoform may co-localize by compar-

ing FISH spot intensities with probes against GFP between mad1+-

GFP mRNA and mad3+-GFP mRNA (the latter coding for Mad3

monomers). We did not find any difference in spot intensity (Fig 7

F). Hence, we conclude that mad1+ mRNAs rarely, if ever, co-

localize, and we favor the idea that Mad1 homodimers emerge from

two ribosomes co-translating a single mRNA (Fig 7B).

The fact that Mad1 homodimers form co-translationally is consis-

tent with the idea that synonymous codon changes may subtly
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Figure 6. Codon identity in mad1+ is important for proper protein concentration.

A Immunoblot of S. pombe protein extracts from cells expressing wild-type (WT) or codon-optimized (co) Mad1-GFP probed with antibodies against GFP and Cdc2 (load-
ing control). Lanes 3–5 are a dilution series of the extract from wild-type cells.

B Immunoblot of protein extracts from wild-type (WT) or ste13Δ strains probed with antibodies against Mad1 and tubulin (loading control). A 1:1 dilution series was
loaded for quantification. Tubulin blot is the same as in Fig 4B.

C Estimates of the protein concentration relative to wild-type conditions from experiments such as in (A) and (B). Bars are experimental replicates, dots are technical
replicates. Blue lines indicate the mean of all experiments. Two-sided t-tests: P = 0.005 (Mad1-co, n = 4 experimental replicates); P = 0.16 (Mad1 ste13Δ, n = 2).

D Whole-cell GFP concentration from individual live-cell fluorescence microscopy experiments (a.u. = arbitrary units). Boxplots show median and interquartile range
(IQR); whiskers extend to values no further than 1.5 times the IQR from the first and third quartile, respectively. Codon-optimized concentration significantly lower
than wild type (generalized linear mixed model). Mad1-GFP: n = 197 and 224; Mad1-co-GFP: n = 80 and 377 cells.

E Representative images from one of the experiments in (D). An average projection of three Z-slices is shown; cells are outlined in gray.
F Live-cell imaging for time spent in mitosis. The alp7+ gene was deleted to increase the likelihood of spindle assembly checkpoint activation. Localization of Plo1-

tdTomato to spindle-pole bodies was used to judge entry into and exit from mitosis (also see Appendix Fig S4). Exp1: n = 73 (WT) and 94 cells (co); Exp2: n = 126
(WT) and 152 cells (co). Boxplots show median and interquartile range (IQR); whiskers extend to values no further than 1.5 times the IQR from the first and third quar-
tile, respectively. Measurements for individual cells are shown in addition (gray circles if measurement was exact, red triangles if end of mitosis was not captured
because imaging ended). Difference between WT and co: P = 0.14 (Exp1) and 0.15 (Exp2) by Kolmogorov–Smirnov test.

Source data are available online for this figure.
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Figure 7. Mad1 homodimers assemble co-translationally.

A Top: Immunoprecipitation (IP) with anti-GFP or anti-Mad1 from extracts of haploid S. pombe cells expressing both untagged and GFP-tagged Mad1, probed with anti-
bodies against Mad1 and tubulin; in = input (2.5% of extract for IP), sup = supernatant after IP. Bottom: Comparison between the observed (obs.) and the expected
(expect.) ratio between Mad1-GFP and untagged Mad1 in the IP given their ratio in the input (see Fig EV6A); two and one experiment(s), respectively. One more GFP-
IP from the same strain was unquantifiable, because no second band was visible in the IP.

B Schematic illustrating that Mad1-Mad1 complex assembly likely takes place co-translationally with only proteins synthesized from the same mRNA being combined.
C Top: Anti-GFP immunoprecipitation (IP) and Strep pull-down (PD) from extracts of diploid cells expressing Mad1-GFP and Mad1-Strep from the two endogenous loci;

membrane probed with anti-Mad1; in, input (7% of extract for IP/PD), sup, supernatant after IP/PD. Bottom: as in (A), 2 experiments each. See Fig EV6 for a quantified
experiment. The experiment shown at the top and two more GFP-IPs from the same strain were unquantifiable, because no second band was visible in the IP.

D In vitro translation (IVT) of Mad1-flag-His and untagged Mad1 in the presence of 35S-labeled Methionine and Cysteine, followed by Mad1 immunoprecipitation (IP) or
His pull-down (PD); in, input (9.5% of extract for IP/PD), sup, supernatant after IP/PD. An IVT with only untagged Mad1 was used to check for specificity of the His PD
(right side). Shown is the autoradiograph after SDS-PAGE with quantification of the Mad1-flag-His to untagged Mad1 ratio in select lanes.

E Test for mRNA dimerization by single-molecule mRNA FISH; probes against mad1+ and GFP. Top: Schematic of genotypes. Example pictures in Fig EV6. Bottom left:
Intensity of cytoplasmic mad1+ mRNA spots in the different strains. For the 2 copy strain, a mad1+ spot was classified as mad1+-GFP if it was co-localizing with a
GFP spot, and as mad1+ otherwise. Colors as indicated in the schematic. Vertical solid line: peak of each density plot; dashed line: theoretical position of a double-
intensity peak. Number of spots analyzed: mad1+ (1 copy strain) = 921, mad1+ (2 copy strain) = 637, mad1+-GFP (2 copy strain) = 982, mad1+-GFP (1 copy strain) =
1,699. Bottom right: Counts of cytoplasmic mad1+ or mad1+-GFP mRNA from the same experiment with generalized linear mixed model fits as lines. Number of cells:
1 copy strain mad1+ = 478, 2 copy strain = 327, 1 copy strain mad1+-GFP = 466.

F Experiment similar to (E), except that cells expressing both mad1+-GFP and mad3+-GFP from the respective endogenous locus were probed with FISH probes against
mad1+ and GFP mRNA. A GFP spot was classified as mad1+-GFP if it was co-localizing with a mad1+ spot (arrowheads), and as mad3+-GFP otherwise. The intensity of
GFP spots was quantified. Vertical solid line: peak of each density plot; dashed line: theoretical position of a double-intensity peak. Number of spots analyzed: mad1+-
GFP = 987, mad3+-GFP = 1,299.

Source data are available online for this figure.
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impair complex formation and therefore translation efficiency and

mRNA stability. Overall, these results suggest that codon usage bias

within mad1+ contributes to maintaining proper mRNA and protein

levels, possibly by supporting Mad1 folding and dimerization.

Discussion

Proteins are the workhorses of cells. The deployment of this work-

horse army is controlled by regulatory elements encoded in DNA that

are still incompletely understood. The spindle assembly checkpoint is

sensitive to expression changes, and we therefore asked which fea-

tures of gene expression may be important for its proper function. Our

results suggest that a combination of short mRNA half-lives and long

protein half-lives is important to keep protein variability low. We also

find that—despite their closely shared function—mad1+ differs in its

expression features from mad2+ and mad3+. The coding sequences of

mad2+ and mad3+ contribute to the short mRNA half-life of these

genes, whereas that of mad1+ contributes to maintaining mRNA

(Appendix Fig S5) and protein levels (Fig 6). We propose that the

choice of synonymous codons in mad1+ is optimized for the formation

of the Mad1 homodimer, and ultimately the Mad1/Mad2 complex.

Short mRNA half-life of constitutively expressed SAC genes
favors low noise

The short mRNA half-lives of mad1+, mad2+, and mad3+, along with

their long protein half-lives, can explain the low protein noise of SAC

genes despite low and variable mRNA numbers (Figs 1 and 2) (That-

tai & van Oudenaarden, 2001). In human cells, a long protein half-life

has also been shown to buffer the effects of variable mRNA numbers

(Raj et al, 2006). Human Mad1, Mad2, and BubR1 (Mad3 ortholog)

are also highly stable proteins (Suijkerbuijk et al, 2010; Varetti et

al, 2011; Schweizer et al, 2013; Rodriguez-Bravo et al, 2014), which

will support stable protein concentrations over time and between

cells. SAC genes are certainly not unique in combining a short mRNA

and long protein half-life to achieve low noise. Other constitutively

expressed genes that produce low or modest amounts of protein will

likely show a similar behavior. Keeping noise low in this manner

requires a high turnover of mRNA that confers some energy cost. An

alternative way to keep protein noise low would be to produce the

same amount of protein from a larger number of more stable mRNA

molecules (Appendix Fig S2C). Several side-effects likely prohibit this

solution as a general strategy. For example, the cytoplasm would be

much more crowded with mRNAs, and stable mRNAs may accumu-

late chemical damage. Indeed, genes using an expression strategy of

high transcription and low translation rates are exceedingly rare

among different eukaryotes (Hausser et al, 2019).

Different SAC genes employ different strategies for achieving
short mRNA half-life

The half-life of an mRNA is influenced by sequence motifs, codon

usage, and other factors that influence translation. Currently, known

factors predict around 50–60% of mRNA half-life in budding yeast

(Neymotin et al, 2016; Cheng et al, 2017). At least two elements

seem to play a role for mad2+ and mad3+: Our data suggest that the

mRNA half-lives are shortened by a high fraction of nonoptimal

codons (Fig 3); in addition, the mad2+ and mad3+ 30 UTRs contain

sequence motifs that are associated with a short mRNA half-life

(Eser et al, 2016). We previously found higher mRNA numbers after

traditional tagging, which changed the 30 UTR to that of a highly

expressed gene (Heinrich et al, 2013), suggesting that the predicted

motifs in the 30 UTR may indeed be functional. For mad1+, in con-

trast, overall codon usage bias seems to play a lesser role (Fig 5),

and the mad1+ 30 UTR does not contain reported motifs implicated

in half-life shortening (Eser et al, 2016). We suspect that other ele-

ments that influence translation efficiency may be important. Gener-

ally, less efficiently translated mRNAs are less stable (Hanson &

Coller, 2018), and mad1+ seems to be translated less efficiently than

mad2+ or mad3+ (Rubio et al, 2020).

Formation of the Mad1/Mad2 complex involves co-translation
assembly of the Mad1 dimer but not synchronous co-
translational assembly of the tetramer

Mad1 and Mad2 form a tight tetrameric complex (Sironi et al, 2002;

Kim et al, 2012), but how this complex assembles is unknown. Our

experiments suggest that the Mad1 homodimer forms between two

polypeptides translated from the same mRNA, and that Mad1 mole-

cules translated from different mRNA molecules associate very inef-

ficiently with each other, if at all (Fig 7). This assembly mode is

further supported by a recent study in human cells, which analyzed

footprints of ribosome disomes on mRNA and found wide-spread

evidence for co-translational assembly of protein homomers (Ber-

tolini et al, 2021). Coiled-coils were the most prominent domain

class driving co-translational assembly, and co-translational assem-

bly was more likely when the dimerization domain was N-terminal.

Mad1 meets both these criteria and was indeed identified in this

study as probably assembling co-translationally.

At least two studies have expressed Mad1 N-terminal fragments

and full-length Mad1 from two different loci and have interpreted

the failure to see association between those two as an inability of

the N-terminal fragment to dimerize (Jin et al, 1998; Ji et al, 2018).

Based on the evidence for co-translational homodimer assembly, we

suggest that the capacity of an N-terminal Mad1 fragment to dimer-

ize would need to be based on assessing self-association rather than

assessing association with Mad1 expressed from a different locus.

Of note, C-terminal Mad1 fragments also dimerize, possibly post-

translationally (Kim et al, 2012), although our own experiments still

suggest a preference of homodimerization (Appendix Fig S6).

While we propose that assembly of the Mad1 homodimer occurs

co-translationally, the assembly of the Mad1/Mad2 tetramer does

not occur in synchronous co-translational fashion, as the mRNAs

for mad1+ and mad2+ do not co-localize in the cytoplasm (Fig 1).

This leaves open the possibility of post-translational assembly of the

tetramer or of asynchronous co-translational assembly, where one

protein is already fully formed and binds the other that is being

translated (Duncan & Mata, 2011; Shiber et al, 2018). Formation of

the C-Mad2/Cdc20 complex necessitates catalysis (Kulukian et

al, 2009; Lad et al, 2009; Simonetta et al, 2009; Faesen et al, 2017;

Piano et al, 2021), making it likely that C-Mad2/Mad1 formation

also needs to be facilitated. We favor the idea that the tetramer

assembles while one of the proteins is being translated, and it will

be interesting to test whether the mad1+ mRNA binds Mad2 protein

or vice versa to facilitate such an assembly. It will also be interesting
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to examine whether different eukaryotes use the same assembly

pathway for the highly conserved Mad1/Mad2 complex.

Potential SAC malfunction from synonymous mutations

Overall, our data suggest that the coding sequences of mad1+,

mad2+, and mad3+ modulate gene expression. Hence, even synony-

mous mutations carry some risk of impairing the SAC. We suspect

that mad1+ is most susceptible to single synonymous substitutions,

given the need for co-translational homodimer assembly (Fig 7),

which may be facilitated by controlling the speed of ribosome

movement (Liu et al, 2021). In S. pombe, a cluster of nonoptimal

codons follows the coiled-coil region of mad1+ (Appendix Figs S3E

and S7), which may ensure that the N-terminal coiled-coil is fully

formed before the remainder of Mad1 is translated.

It will be interesting to test whether synonymous mutations

found in cancer samples can modulate SAC gene expression or func-

tion. Within MAD2L1 (H.s. mad2+), synonymous mutations

detected in cancer samples seem to cluster in a conserved region

with high CSC values preceding the “seat belt,” (Appendix Fig S7)

suggesting that codon usage bias in this region may be functionally

important. Although most synonymous mutations will only have

small effects, they may fuel carcinogenesis. This is particularly true

in the context of the SAC, because drastic impairment is more likely

to be detrimental for cancer cells, whereas subtle impairment may

promote carcinogenesis (Kops et al, 2004; Funk et al, 2016; Cohen-

Sharir et al, 2021; Quinton et al, 2021). Synonymous mutations and

changes in tRNA expression have been implicated in carcinogenesis

(Sauna & Kimchi-Sarfaty, 2011; Supek et al, 2014). Our data suggest

that this may partly occur by impairing the SAC.

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Experimental models

Schizosaccharomyces pombe strains This study Appendix Table S1

Saccharomyces cerevisiae strain Nick Buchler, NC State
University, USA

Appendix Table S1

Recombinant DNA

sgRNA sequences This study Appendix Table S2

Codon-optimized mad1, mad2, and mad3 This study Appendix Table S3

PCR fragments for in vitro transcription This study Appendix Table S6

Antibodies

Mouse anti-Cdc13 (monoclonal) Novus Cat # NB200-576; RRID: AB_10003103

Rabbit anti-Cdc2 (polyclonal) Santa-Cruz Cat # sc-53; RRID: AB_2074908

Mouse anti-GFP (mix of 2 monoclonals) Roche Cat # 11814460001; RRID: AB_390913

Rabbit anti-Mad1 (polyclonal, against
peptide ADSPRDPFQSRSQLC)

Heinrich et al (2013), PMID:
24161933

N/A

Rabbit anti-Mad2 (polyclonal, against
recombinant protein)

Sewart and Hauf (2017),
PMID: 28366743

N/A

Rabbit anti-Mad3 (polyclonal, against
recombinant protein)

Sewart and Hauf (2017),
PMID: 28366743

N/A

Rabbit anti-Strep-tag II (monoclonal,
recombinant)

Abcam Cat # ab180957

Rabbit anti-Strep-tag II (polyclonal) Abcam Cat # ab76949; RRID: AB_1524455

Mouse anti-tubulin Sigma Cat # T5168; RRID: AB_477579

Goat anti-mouse HRP Jackson ImmunoResearch Labs Cat # 115–035-003; RRID: AB_10015289

Goat anti-rabbit HRP Jackson ImmunoResearch Labs Cat # 111–035-003; RRID: AB_2313567

Oligonucleotides and other sequence-based reagents

FISH probes This study Appendix Table S4

qPCR primers This study Appendix Table S5

Chemicals, enzymes, and other reagents

4-thiouracil (4tU) Chem Impex Cat # 21484

MTSEA biotin-XX Biotium Cat # 90066

Cycloheximide (from Streptomyces griseus) Chem Impex Cat # 00083

Wizard SV Gel and PCR Clean-Up System Promega Cat # A9285
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

SuperScript IV First Strand Synthesis System ThermoFisher Cat # 18091050

HiScribe T7 ARCA mRNA Kit (with tailing) New England Biolabs Cat # E2060S

Monarch RNA Cleanup Kit New England Biolabs Cat # T2040S

Rabbit Reticulocyte Lysate, Nuclease-
Treated

Promega Cat # L4960

EasyTag EXPRESS 35S Protein Labeling Mix Perkin Elmer Cat # NEG772007MC

SUPERase•In RNase Inhibitor ThermoFisher Cat # ACM2694

SuperSignal West Pico PLUS
Chemiluminescent Substrate

ThermoFisher Cat # 34580

cOmplete, EDTA-free Protease Inhibitor
Cocktail

Roche Cat # 04693132001

Halt Protease Inhibitor Cocktail, EDTA-Free
(100X)

ThermoFisher Cat # 87785

PhosSTOP Roche Cat # 04906837001

Halt Phosphatase Inhibitor Cocktail ThermoFisher Cat # 78420

Dynabeads Protein G ThermoFisher Cat # 10003D

Dynabeads His-Tag Isolation and Pull-down ThermoFisher Cat # 10103D

MagStrep “type3” XT beads IBA Lifesciences Cat # 2–4090-002

Dynabeads MyOne Streptavidin C1 Thermo Fisher Cat # 65001

Oligo d(T)25 Magnetic Beads New England Biolabs Cat # S1419S

Pierce BCA Protein Assay Kit ThermoFisher Cat # 23225

EMM (Edinburgh’s Minimal Medium) MP Biomedicals Cat # 114110022

Lectin Sigma Cat # L1395

Software

Fiji/ImageJ Schindelin et al (2012), PMID:
22743772

https://imagej.net/software/fiji/; RRID: SCR_002285

SoftWoRx Applied Precision, GE
Healthcare

https://download.cytivalifesciences.com/cellanalysis/download_data/
softWoRx/6.5.2/SoftWoRx.htm; RRID: SCR_019157

MetaMorph Molecular Devices Version 7.10.1

YeaZ Dietler et al (2020), PMID:
33184262

N/A

ImageLab Bio-Rad Laboratories Version 6.0.1 build 34

Matlab Mathworks https://www.mathworks.com; RRID: SCR_001622

FISH-Quant Mueller et al (2013), PMID:
23538861

N/A

Trainable Weka Segmentation Arganda-Carreras et al (2017),
PMID: 28369169

N/A

Prism 9 GraphPad Software, Inc https://www.graphpad.com; RRID: SCR_002798

R Cran.R https://cran.r-project.org; RRID: SCR_001905

R studio N/A https://www.rstudio.com; RRID: SCR_000432

tidyverse package Cran.R https://tidyverse.tidyverse.org; RRID: SCR_019186, Version 1.3.1

ggplot2 package Cran.R https://ggplot2.tidyverse.org/; RRID: SCR_014601

alphashape3d package Cran.R https://CRAN.R-project.org/package=alphashape3d, Version 1.3.1

boxcoxmix package Cran.R https://cran.r-project.org/src/contrib/Archive/boxcoxmix/, Version 0.28

broom package Cran.R https://CRAN.R-project.org/package=broom, Version 0.7.9

broom.mixed package Cran.R https://CRAN.R-project.org/package=broom.mixed, Version 0.2.7

cairo package Cran.R https://CRAN.R-project.org/package=Cairo, Version 1.5–12.2
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Reagents and Tools table (continued)

Reagent/Resource Reference or Source Identifier or Catalog Number

cowplot package Cran.R https://cran.r-project.org/package=cowplot; RRID: SCR_018081, Version 1.1.1

descTools package Cran.R https://cran.r-project.org/package=DescTools, Version 0.99.43

egg package Cran.R https://CRAN.R-project.org/package=egg, Version 0.4.5

geometry package Cran.R https://CRAN.R-project.org/package=geometry, Version 0.4.5

gridExtra package Cran.R https://CRAN.R-project.org/package=gridExtra, Version 2.3

lemon package Cran.R https://CRAN.R-project.org/package=lemon, Version 0.4.5

lme4 package Cran.R https://cran.r-project.org/web/packages/lme4/index.html; RRID: SCR_015654

Irescale package Cran.R https://CRAN.R-project.org/package=Irescale, Version 2.3.0

MASS package Cran.R https://cran.r-project.org/package=MASS; RRID: SCR_019125

mclust package Cran.R https://cran.r-project.org/package=mclust

nabor package Cran.R https://cran.r-project.org/package=nabor

pbkrtest package Cran.R https://cran.r-project.org/package=pbkrtest

plotly package Cran.R https://plotly.com/r/; RRID: SCR_013991, Version 4.10.0

plyr package Cran.R https://cran.r-project.org/package=plyr

readxl package Cran.R https://cran.r-project.org/web/packages/readxl/index.html; RRID: SCR_018083,
Version 1.3.1

rgl package Cran.R https://CRAN.R-project.org/package=rgl, Version 0.107.14

sf package Cran.R https://CRAN.R-project.org/package=sf

shotGroups package Cran.R https://CRAN.R-project.org/package=shotGroups, Version 0.8.1

spatstat package Cran.R https://cran.r-project.org/package=spatstat

Other

Mixer mill MM400 Retsch Cat # 20.745.0001

Grinding jar 10 ml Retsch Cat # 01.462.0236

Grinding jar 25 ml Retsch Cat # 01.462.0213

Adapter for reaction vials Retsch Cat # 22.008.0008

Glass beads, acid-washed Sigma Cat # G8772

μ-Slide 8-well, glass bottom Ibidi Cat # 80827

Y04C Microfluidic Plate for Haploid Yeast CellAsic / Sigma Cat # Y04C-02-5PK

Invitrogen NuPAGE 4 to 12%, Bis-Tris, 20-
well

Invitrogen Cat # WG1402BOX

Invitrogen NuPAGE 4 to 12%, Bis-Tris, 20-
well

Invitrogen Cat # NP0322BOX

Immobilon-P PVDF membrane Millipore Cat # IPVH00010

Methods and Protocols

Yeast strains
Yeast strains are listed in Appendix Table S1. Tagging of nmt1+ and

deletion of ste13+ and alp7+ were performed by conventional PCR-

based gene targeting (B€ahler et al, 1998). Marker-less insertion at

the endogenous locus was performed either by replacement of a

counter-selectable rpl42-hphNT1 cassette in an rpl42::cyhR(sP56Q)

background (Roguev et al, 2007) or by using CRISPR/Cas9 (Jacobs

et al, 2014). Sequences used for targeting Cas9 are listed in

Appendix Table S2. The mad2+-ymEGFP strain contains a single,

silent (AGG to AGA) PAM site mutation at amino acid position 173

of Mad2. The mad3+-ymEGFP strain contains a single, silent (TTG

to TTA) PAM site mutation at amino acid position 199 of Mad3.

Yeast, monomeric-enhanced GFP (ymEGFP) was derived from

yEGFP (yeast codon-optimized green fluorescent protein (Watson et

al, 2008)) by mutation of Alanine 206 to Arginine (A206R), which

is expected to reduce dimerization (Zacharias et al, 2002). Codon-

optimization used proprietary algorithms by two different compa-

nies, and sequences are listed in Appendix Table S3. The haploid

strain with two differently tagged versions of mad1+ has mad1+-

ymEGFP along with 110 bp upstream and 164 bp downstream of the

coding sequence integrated between the leu1+ and apc10+ gene.

Yeast cultures
Schizosaccharomyces pombe cultures were grown at 30°C either in

rich medium (yeast extract supplemented with 0.15 g/l adenine;

YEA) or in Edinburgh minimal medium (EMM, MP Biomedicals,
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4110012) supplemented with 0.2 g/l leucine, 0.15 g/l adenine or

0.05 g/l uracil if required (Petersen & Russell, 2016). When cultures

in minimal medium were started at low concentration, “pre-

conditioned medium” was added to a maximum of 50%. Precondi-

tioned medium was obtained by growing cells in EMM and then

removing the cells by filtration. For growth assays, cells were grown

in YEA to a concentration of around 1 × 107 cells/ml, diluted to

4 × 105 cells/ml in YEA and further diluted in a 1:5 dilution series.

10 μl were spotted on indicated plates. S. cerevisiae cultures were

grown at 30°C in yeast extract supplemented with 20 mg/ml each of

Bacto peptone and dextrose (YPD).

Cycloheximide treatment for determination of protein half-lives
Cells were grown in EMM (plus supplements required for aux-

otrophic mutations) to a final concentration of around 1 × 107 cells/

ml. Cultures were diluted to 8 × 106 cells/ml, transferred to a 30°C
water bath for 30 min and a sample was taken prior to the addition

of cycloheximide (CHX) to a final concentration of 1 mg/ml. Cells

were collected at specified time points, spun down at 980 rcf, and

frozen in liquid nitrogen before processing.

In vitro transcription and translation
The T7 promoter was appended 50 of the mad1+ transcription start

site by PCR. Precise sequences are available in Appendix Table S6.

Full-length mad1+ was amplified from cDNA generated using the

SuperScript IV First Strand Synthesis System (ThermoFisher). Mad1

fragments 30 of the intron were amplified from genomic DNA. PCR

fragments were purified using the Wizard SV Gel and PCR Clean-Up

System (Promega). In vitro transcription was carried out with the

HiScribe T7 ARCA mRNA Kit (with tailing) (New England Biolabs)

using between 25 and 70 ng/μl template DNA. Reactions were run

at 32°C or 37°C for 2 h. RNA was purified using the Monarch RNA

Cleanup Kit (New England Biolabs). RNAs were mixed and diluted

as required before adding them to rabbit reticulocyte lysate

(Promega). Translation reactions contained amino acid mix without

Methionine, approx. 1 mCi/ml 35S-Methionine/Cysteine mix (Perkin

Elmer, NEG772007MC), 0.2 U/μl SUPERase•In RNase Inhibitor

(ThermoFisher), and between 0.35 and 40 ng/μl RNA. Incubation
was at 30°C for 1 h 30 min.

Denatured whole-cell extracts
Cells were grown to a final concentration of around 1 × 107 cells/ml

and collected by centrifugation (1 × 108 cells per sample). Super-

natant was removed, and cells were washed with 1 ml of 20%

trichloroacetic acid (TCA). Supernatant was removed, and cells

were resuspended in 500 μl of water. 75 μl of NaOH/beta-

mercaptoethanol (final conc. = 0.22 M NaOH, 0.12 M b-ME) was

added, and samples incubated on ice for 15 min. 75 μl of 55% TCA

was added and samples incubated on ice for another 10 min. Sam-

ples were spun at 16,900 rcf for 10 min at 4°C, and supernatant was

removed. Pellets were resuspended in 100 μl sample buffer (50 μl of
2x HU buffer [8 M urea, 5% SDS (w/v), 200 mM Tris–HCl pH 6.8

(v/v), 20% glycerol (v/v), 1 mM EDTA (v/v), 0.1% (w/v) bro-

mophenol blue], 40 μl water, and 10 μl of 1 M DTT) to a final con-

centration corresponding to 1 × 109 cells/ml. Approximately 150 μl
of acid-washed beads (Sigma) were added before agitation in a ball

mill (Mixer Mill 400; Retsch) for 2 min at 30 Hz. Tubes were pierced

at the bottom, cell extract was collected from the beads by

centrifugation at 2,350 rcf for 1 min and heated at 75°C for 5 min.

Typically, the extract equivalent of 2–3 × 106 cells was loaded for

immunoblotting.

Immunoprecipitation or pull-down from yeast cell extract
Asynchronously growing cultures were harvested, washed with

deionized water, or with 20 mM Tris pH 7.5/150 mM NaCl, and

frozen as droplets in liquid nitrogen. Cell powder was prepared from

these droplets using a ball mill (Mixer Mill 400; Retsch) for 30 s at

30 Hz under cryogenic conditions. Cell powder was resuspended in

lysis buffer (20 mM Tris pH 7.5, 150 mM NaCl, 5% glycerol, and

0.1% NP-40), and protein concentration was determined by BCA

assay (ThermoFisher). For immunoprecipitations, powder was

resuspended to a final concentration of 15–20 mg/ml in lysis buffer

supplemented with a 5–10x final concentration of protease inhibitor

cocktail and a 1x final concentration of phosphatase inhibitor cock-

tail. Extracts were spun down for 10 min at 4°C and 16,900 rcf. For

the input sample, supernatant was mixed with an equal volume of

sample buffer (2x HU buffer with 200 mM DTT, or 2x NuPAGE LDS

sample buffer with 10% beta-mercaptoethanol) and heated for 3–
5 min at 75°C. For immunoprecipitations, Protein G Dynabeads

(ThermoFisher) were covalently coupled with anti-GFP antibodies

(Roche, 160 μg antibody per 1 ml bead suspension) or anti-Mad1

antibodies (80 μg antibody per 1 ml bead suspension). Strep-tag

pull-downs used MagStrep “type3” XT beads (IBA Lifesciences).

Immunoprecipitations used around 30 μl bead suspension per

200 μl of extract and were performed for 10 min at 4°C on a rotating

wheel. Strep pull-downs used around 200 μl bead suspension per

200 μl of extract and were performed for 45 min to 1 h at 4°C on a

rotating wheel. Beads were washed with lysis buffer (IPs), or with a

more stringent wash buffer (20 mM Tris pH 7.5, 300 mM NaCl, 5%

glycerol, 1% NP-40) for some Strep pull-downs. Elution from anti-

GFP or anti-Mad1 beads was performed by the addition of 7–25 μl
100 mM citric acid and gentle agitation for 5 min at 4°C. Samples

were neutralized by the addition of 1.5 M Tris pH 9.2, mixed with

an equal volume of sample buffer and heated at 75°C for 3 min. Elu-

tion from MagStrep beads was performed with sample buffer and

incubation at 95°C for 2 min, or 85°C for 5 min.

Immunoprecipitation or pull-down after in vitro translation
In vitro translation reactions (IVTs) were diluted to 6- to 13-times

the original volume with either Tris buffer for immunoprecipitations

(final concentration: 20 mM Tris pH 7.5, 150 mM NaCl, 0.1% NP-

40), or with sodium-phosphate buffer for Ni-NTA pull-downs (final

concentration: 50 mM sodium-phosphate pH 8.0, 300 mM NaCl,

0.01% Tween-20). Immunoprecipitations used 10 μl Dynabeads sus-
pension, Ni-NTA pull-downs used 40 μl Ni-NTA Dynabeads suspen-

sion per 15 μl original IVT (volume prior to dilution).

Immunoprecipitations were processed as above, Ni-NTA beads were

washed with sodium-phosphate buffer plus 10–20 mM imidazole

and 0.1% NP-40 and eluted with sodium-phosphate buffer plus an

additional 300 mM imidazole.

Immunoblotting
Proteins were separated by SDS-PAGE (NuPAGE, Bis-Tris, MOPS

buffer, Thermo Fisher) and transferred onto a PVDF membrane

(Immobilon-P, Millipore) in a semidry blotting assembly (Amer-

sham Biosciences TE-70 ECL) using transfer buffer (39 mM glycine,
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48 mM Tris base) with 10% methanol, 0.01% SDS, and 1:1,000

NuPAGE Antioxidant. Membranes were probed with mouse anti-

GFP (Roche, 11814460001), rabbit anti-Cdc2 (CDK1, Santa Cruz,

SC-53), mouse anti-Cdc13 (cyclin B, Novus, NB200-576), rabbit

anti-Mad1 (Heinrich et al, 2013), rabbit anti-Mad2 (Heinrich et

al, 2013), rabbit anti-Mad3 (Heinrich et al, 2013), rabbit anti-Strep

(Abcam, ab180957 and ab76949), or mouse anti-tubulin (Sigma,

T5168). Secondary antibodies were either anti-mouse or anti-rabbit

conjugated to HRP (Dianova) and quantified by chemiluminescence

using SuperSignal West Dura ECL (ThermoFisher) and imaged on a

Bio-Rad Gel Doc system. Chemiluminescence signals were quanti-

fied on nonsaturated images using Image Lab software (Bio-Rad).

Measurements from a reference dilution series were used to create a

standard curve, which was used to determine the concentration of

sample relative to the reference. Membranes with radioactive pro-

teins were dried and exposed to a phosphorscreen (GE Healthcare),

which was read-out on a Typhoon phosphorimager (GE Healthcare/

Cytiva).

Quantification of GFP fusion proteins in single cells (3D
segmentation)
To quantify GFP fusion proteins in single cells, cells were grown in

EMM (plus supplements that were required for auxotrophic muta-

tions) at 30°C to a final concentration of 6–9 × 106 cells/ml. Cultures

of GFP-positive and GFP-negative cells were mixed at a 1:1 ratio to

a final concentration of 2.5–6.0 × 106 cells/ml and incubated for

30 min at 30°C. To ensure a uniform and flat imaging plane, cells

were loaded into a Y04C microfluidics trapping plate (Millipore

Sigma) and incubated inside a climate-controlled microscope cham-

ber for 2 h at 30°C with constant flow of fresh media. Imaging was

performed on a DeltaVision Elite system equipped with a PCO edge

sCMOS camera and an Olympus 60x/1.42 Plan APO oil objective.

Images were acquired for ymEGFP, tdTomato, and brightfield as

7.2 μm or 10 μm stacks with images separated by 0.1 μm. The

acquired image area was 1,024 × 1,024 pixels with 1 × 1 binning.

All images were deconvolved using SoftWoRx software. To correct

for uneven illumination, deconvolved fluorescence images were flat-

fielded individually for each channel using a custom FIJI script (Bay-

bay et al, 2020).

The Pomegranate image analysis pipeline (Baybay et al, 2020)

was used to segment nuclei (using TetR-tdTomato-NLS) and whole

cells (using brightfield signal and spherical extrusion of the mid-

plane segmentation) (Appendix Fig S1A). We corrected for chro-

matic aberration and for stretching of distances in the Z direction

(Baybay et al, 2020). Further analysis was conducted in R (R Core

Team, 2020), and figures were produced using the package ggplot2

(Wickham, 2016).

Only information from mono-nucleated cells for which both the

whole cell and the nucleus had been segmented was retained. Cells

were excluded if one or more of the following conditions were met:

the nuclear segmentation protruded beyond the three-dimensional

bounds of the cell; whole-cell segmentation was cut-off by more

than two slices because insufficient slices in Z had been recorded;

cell was at the image edge and incompletely recorded; the nucleus

had an aspect ratio (diameter in Z to diameter in XY) of less than

0.8 or more than 1.2; cell volume was lower than the 0.1st or higher

than the 99.9th percentile. Cells with or without GFP signal were dis-

tinguished by k-means (k = 2) clustering (Appendix Fig S1D–F),

except for Nmt1-GFP, where the threshold for each image was set

manually. One image, where the autofluorescence of GFP-negative

cells deviated by more than three standard deviations from that of

other images, was excluded. One additional image, where the cells

had visibly moved during acquisition, was also excluded.

To subtract autofluorescence and other background, we averaged

the fluorescence intensity per cell or nuclear volume for GFP-

negative cells in an image and subtracted that value from the fluo-

rescence intensity per cell or nuclear volume of each GFP-positive

cell in the image. For a rough estimate of absolute concentration in

nanomolar, we used our previous estimate of about 70 nM Mad3-

GFP in the cell nucleus (Heinrich et al, 2013) and normalized all

background-subtracted data to this value.

Even after background subtraction, we observed some variation

of mean intensities between single images (Appendix Fig S1F), and

we could not distinguish whether these differences were a conse-

quence of sampling or came from conditions on the microscope

stage while recording the image. We therefore opted to determine

the coefficient of variation (CV = standard deviation/mean) for each

protein not across all images, but instead for each image separately;

Fig 2A shows the variation across images.

Generalized linear mixed models were used to test for differences

in whole-cell GFP concentration between wild-type and codon-

optimized Mad1, Mad2, and Mad3 from the single-cell measure-

ments. A separate model was fit for each gene and included whole-

cell GFP concentration as the response variable and genotype (wild-

type versus codon-optimized) as a categorical fixed effect predictor

variable. Two nested random effects variables, experimental repli-

cate and image, were also included in the model (random intercepts

only). To meet the model assumptions of normality and constant

variance, GFP concentration was transformed with a Box Cox trans-

formation using “optim.boxcox” from the boxcoxmix package.

Wild-type and codon-optimized genotypes were determined to have

significantly different GFP concentrations if the 95% bootstrap con-

fidence interval for the genotype coefficient excluded 0.

Quantification of GFP in single cells (2D segmentation and
projection)
For experiments evaluating fluorescence signals after replacing the

coding sequences of mad1+, mad2+, and mad3+ (Appendix Fig S5),

quantification was performed on projections, using 2D segmentation

of cells. Cells were grown in minimal medium, collected by centrifu-

gation from liquid cultures, mounted in medium on a slide, and

brightfield and fluorescence images were collected immediately at

room temperature. At least two slides were prepared and imaged for

each strain. Images were recorded on a Zeiss AxioImager M1, using

Xcite Fire LED illumination (Excelitas), a Zeiss Plan-Apochromat

63x/1.40 Oil DIC objective, and an ORCA-Flash4.0LT sCMOS cam-

era (Hamamatsu) with Z sections spaced by 0.2 μm.

Cells were segmented based on an in-focus brightfield image

using YeaZ (Dietler et al, 2020). Falsely segmented cells (e.g., back-

ground, or cells falsely combined into one) were manually excluded

in Fiji. Only cells in the center of the image, where fluorescence illu-

mination was homogeneous, were included. Flatfielding was not

performed. The brightfield images were systematically shifted rela-

tive to the fluorescence images and we corrected for that error.

Quantification of signals was performed on an average projection of

the 23 most in-focus Z-slices (covering 4.6 μm, which is slightly
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larger than the width of a typical S. pombe cell). For each image,

the median extracellular background in the same central area of the

image was subtracted.

Single-molecule mRNA FISH
For quantification of mRNA by single-molecule fluorescent in-situ

hybridization, cultures of asynchronously dividing cells were grown

to a concentration of about 1 × 107 cells/ml in EMM. Typically,

2 × 108 cells were fixed with 4% paraformaldehyde for 30 min

before being washed three times with ice-cold Buffer B (1.2 M sor-

bitol, 100 mM potassium phosphate buffer pH 7.5) and stored at

4°C before digestion of the cell wall. Cells were resuspended in

spheroplast buffer (1.2 M sorbitol, 0.1 M potassium phosphate,

20 mM vanadyl ribonuclease complex [NEB S1402S], 20 μM beta-

mercaptoethanol) and digested with 0.002% 100 T zymolyase (US

Biological Z1005) for approximately 45–75 min. Zymolyase reaction

was quenched when the addition of water to the cells resulted in

around 50% lysed cells. Reactions were quenched with 3 washes of

Buffer B. Cell pellets were resuspended in 1 ml of 0.01% Triton

X-100 in 1x PBS for 20 min and washed three times with Buffer B.

For hybridization of probes, approximately 20–25 ng of CAL Fluor

red 610 probes targeting ymEGFP or mad2+, or Quasar 570 probes

targeting mad1+ were mixed with 2 μl each of yeast tRNA (Life

Technologies) and Salmon sperm DNA (Life Technologies) per reac-

tion. For two-color FISH experiments, 20–25 ng of each probe were

combined, resulting in ~ 50 ng of total FISH probes per reaction.

Sequences of probes are given in Appendix Table S4. Buffer F (20%

formamide, 10 mM sodium-phosphate buffer pH 7.2; 45 μl per reac-
tion) was mixed with the probe solution, heated at 95°C for 3 min,

and allowed to cool to room temperature before mixing with Buffer

H (4x saline-sodium citrate (SSC) buffer, 4 mg/ml acetylated BSA,

20 mM vanadyl ribonuclease complex; 50 μl per reaction). Each

sample of digested cells was divided into two reactions, each of

which was resuspended in 100 μl of this hybridization solution.

Resuspended cells were incubated at 37°C overnight. Cells were

washed with 10% formamide/2x SSC followed by 0.1% Triton X-

100/2x SSC). For DAPI staining, cells were incubated in 1x PBS with

1 μg/ml DAPI for 10 min and washed once more with 1x PBS. Cell

pellets were mixed with SlowFade Diamond Antifade Mountant

(Thermo Scientific, S36972) and mounted on DEPC-cleaned slides

using #1.5 glass coverslips. Imaging was performed on a Zeiss

AxioImager M1 equipped with Xcite Fire LED illumination (Exceli-

tas), a Zeiss α Plan FLUAR 100x/1.45 oil objective, and an ORCA-

Flash4.0LT sCMOS camera (Hamamatsu). Images were acquired for

6 μm in Z separated by 0.2 μm steps for each channel. Images of

labeled RNA were captured with either an mCherry filter or a “gold

FISH” filter (Chroma, 49,304). Additional data on the cell and

nucleus were captured with GFP, DAPI, and CFP filters. Images

were dark noise-subtracted and flatfield-corrected. A custom FIJI

macro, using trainable WEKA segmentation (Arganda-Carreras et

al, 2017), was used to create two-dimensional outlines of cells by

CFP autofluorescence and of corresponding nuclei by DAPI. For

analyses with cytoplasmic or nuclear RNA counts (except the

mad1/mad2 co-localization experiment; Fig 1F), nuclei were re-

segmented in three dimensions using a FIJI macro adapted from

https://github.com/haesleinhuepf/cca_benchmarking (Robert

Haase, MPI-CBG, Dresden). Analysis was limited to cells whose

nuclei were entirely contained within the image stack. RNA spot

analysis was performed in FISHquant (Mueller et al, 2013). Spots

were initially detected based on an automatic intensity threshold

and filtered with an additional manual threshold following the sug-

gestions of the FISHquant documentation. A subset of cells in

each image was cross-checked manually for successful RNA spot

detection.

To measure co-localization of mad1+ and mad2+ mRNA, a two-

color FISH experiment was performed targeting mad1+ with gene-

specific probes and mad2+-ymEGFP with ymEGFP probes. The three-

dimensional coordinates of each spot were recorded and corrected

for relative chromatic aberration in Z. Distances were then calculated

from each mRNA to its nearest neighbor of the other species within

the same cell. To determine a distance cut-off for classifying RNA

molecules as either co-localized or unpaired, the same two probe

sets were used in another two-color FISH experiment in which both

probes targeted mad1+-ymEGFP. Nearest-neighbor distances were

calculated in the same way, and the distribution of these distances

was used to determine the co-localization distance cut-off value. This

cut-off was applied to the distances in the original experiment to

classify each mad1+ or mad2+ mRNA molecule as co-localized or

unpaired.

To test if mad1+ mRNA forms dimers, we used RNA FISH experi-

ments to measure spot intensities and counts of RNA in the cyto-

plasm in strains with the following genotypes: (1) untagged mad1+

expressed from the endogenous locus, (2) untagged mad1+

expressed from the endogenous locus and mad1+-ymEGFP

expressed from the exogenous leu1+ locus, (3) endogenous mad1+

deleted and mad1+-ymEGFP expressed from the exogenous leu1+

locus, and (4) mad1+-ymEGFP and mad3+-ymEGFP expressed from

the endogenous loci. All samples were hybridized with a combina-

tion of mad1- and ymEGFP-targeting probes in two-color FISH exper-

iments. FISH probe spots were quantified separately for each

imaging channel. Colocalized spots of different colors were then

paired using the same co-localization method as described for

mad1/mad2 co-localization above. Intensity analysis used the

amplitude of the point spread function fit to each spot provided by

FISHquant (Mueller et al, 2013). Using the intensity of each spot

after background filtering, also provided by FISHquant, yielded the

same result. All images quantified from the experiment for each

probe set, regardless of genotype, gave consistent distributions of

spot intensities, except for one image: while the distributions of spot

intensities were qualitatively the same and the counts of spots were

consistent with the other images, both its mad1+ and its GFP probe

spot intensities were shifted substantially lower compared with the

other images (including another image from the same slide and

another slide prepared from the same FISH sample). Thus, we

decided to remove it from the analysis.

Single-cell RNA counts from FISH experiments were fit with gen-

eralized linear mixed models. All models used a Poisson error distri-

bution and natural log link function. The models included the fixed

effect cell length and up to three nested random effects (when pre-

sent): biological replicate (strain), experimental replicate, and

microscopy image. Random effects included both random slopes

and intercepts for all three variables. As the relationship between

mean RNA count and cell length was approximately linear, cell

length was natural log transformed. The transformed cell length

was then centered so that a cell of average length had a value of

zero.
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To test for differences in mean RNA levels between genotypes,

the categorical fixed effect variable genotype was added to the

model. The interaction between cell length and genotype was also

included if a likelihood ratio test comparing models with and with-

out the interaction term showed that it improved the model’s ability

to explain the data significantly (P < 0.05). P-values for the likeli-

hood ratio test were obtained both by comparing the test statistic to

a chi-square distribution and generating a null distribution by boot-

strapping (1,000 replicates) using the “PBmodcomp” function from

the package pbkrtest. In all cases, the results were consistent

between the two methods. Only a few models required the interac-

tion term: comparison of wild-type with codon-optimized mad2

(whole cell, cytoplasmic, and nuclear RNA counts), comparison of

wild-type with codon-optimized mad2 + ste13Δ (cytoplasmic RNA

only), and comparison of untagged and GFP-tagged mad1+.

Genotype coefficients and corresponding 95% bootstrap confidence

intervals presented in the paper were exponentiated (e^) and represent

the ratio of expected RNA levels between the two genotypes in each

comparison. RNA levels were considered significantly different

between genotypes if the exponentiated confidence interval excluded

1.

Assay for spindle assembly checkpoint function using nda3-KM311
Strains expressing the tubulin mutant nda3-KM311 were grown in

EMM (plus supplements required for auxotrophic mutations) at 30°C to

a concentration of 0.5–1.0 × 107 cells/ml. Cells were diluted with EMM

to a final concentration of 7.5 × 105 or 1.5 × 106 cells/ml. 300 μl of
each strain were loaded into a lectin-coated Ibidi μ-Slide glass-bottom

chamber and incubated about 1 h at 16°C on the microscope stage prior

to imaging. Cells were imaged at 16°C on a DeltaVision Elite system

with a PCO edge sCMOS camera (PCO), an Olympus 60x/1.42 Plan

APO oil objective, and EMBL environmental chamber. Images were

acquired every 5 min for GFP and mCherry over an 18-h period using

an “optical axis integration” (sum projection) over a 3.2 μm Z-distance.

Plo1-mCherry localizes to spindle-pole bodies during mitosis and

was used to identify cells in mitosis. Kinetochores cluster with

spindle-pole bodies in S. pombe interphase (Funabiki et al, 1993)

and dot-like GFP signals were therefore measured in the direct vicin-

ity to Plo1-mCherry. An area of the same size for each cell was used

to capture the kinetochore signal and was also used to measure the

intensity in the nucleoplasm for background subtraction. GFP inten-

sities from multiple cells were aligned to the time point of Plo1-

mCherry appearance and averaged for each time point.

Assay for spindle assembly checkpoint function using alp7Δ
Cells were grown in EMM at 25°C to a concentration of 0.5–
1.0 × 107 cells/ml, diluted to 1.5 × 106 cells/ml, and 300 μl of this
dilution were loaded into a lectin-coated ibidi μ-Slide glass-bottom

chamber. Cells were incubated on the microscope stage at 30°C for

35 min before imaging. Images were acquired at 30°C every 55 s to

1.5 min for 2–3.5 h using an “optical axis integration” (sum projec-

tion) over a 3.6 μm Z-distance. Cells were segmented based on the

brightfield image using YeaZ (Dietler et al, 2020). All pixels within

the cell were quantified and the 0.1st percentile value was sub-

tracted from the 99.9th percentile value to obtain the “maximal

intensity.” The localization of Plo1-tdTomato to spindle-pole bodies

or Mad1-GFP to kinetochores (Appendix Fig S4F) is reflected in

higher maximal intensities. Time in mitosis was determined from a

custom Matlab script that detects strong increases and decreases in

signal. Some cells could not be analyzed in an automated fashion

(e.g., due to overlapping other cells) and were analyzed manually.

The analysis mode is reported in the source data.

RNA preparation
Asynchronous S. pombe cultures were grown to a final concentra-

tion of approximately 0.7–1.5 × 107 cells/ml at 30°C in either EMM

with 0.2 g/l leucine or YEA. 1 × 108 cells were collected by centrifu-

gation, washed once with deionized water, and immediately flash-

frozen in liquid nitrogen and stored at −80°C before processing.

RNA was extracted by resuspending samples in 700 μl of TES buffer

(10 mM Tris HCL pH 7.5, 10 mM EDTA, 0.5% SDS) and adding

700 μl of acidic phenol chloroform (Fisher Scientific). Samples were

immediately vortexed for 20 s and incubated for 1 h at 65°C. Fol-
lowing incubation, samples were cooled on ice for 1 min, vortexed

for an additional 20 s, and centrifuged for 15 min at 16,000 rcf at

4°C. The RNA was further purified by twice mixing the aqueous

supernatant with 700 μl of acidic phenol chloroform and centrifug-

ing the solution in a 5Prime Phase Lock Gel Heavy 2 ml tube (And-

win Scientific) at 16,000 rcf to separate the phases. Following

overnight ethanol precipitation, samples were centrifuged at

16,000 rcf for 10 min at 4°C and washed with one equivalent of

70% ethanol before additional centrifugation. Samples were left to

air-dry at room temperature and resuspended in nuclease free water

before quantification. 50 μg of total RNA was subjected to DNase

treatment (Roche, 10776785001) followed by ethanol precipitation.

Quantitative PCR (qPCR)
For quantitative PCR (qPCR), 1 μg of DNase-treated total RNA was

subjected to Superscript IV cDNA synthesis using oligo d(T)20
primers. Transcript abundance was quantified on a QuantStudio 6

Real-Time PCR system using SYBR® Green PCR Master Mix (Ther-

moFisher) and gene-specific primers (Appendix Table S5). To esti-

mate relative expression, raw Ct values (2–3 technical replicates per

sample) were averaged and normalized according to the following

formula (Pfaffl, 2001; Hellemans et al, 2007):

Relative Expression

¼ efficiencytarget þ 1
� � Cttarget control � Cttarget sampleð Þ

Q
efficiencyreference þ 1

� � Ctreference control � Ctreference sampleð Þ� �1
n

where “target” is the mRNA of interest, “reference” is the reference

gene, “sample” is the sample of interest, and “control” is the con-

trol sample being normalized to. The denominator is the geometric

mean of the reference genes (act1+ and cdc2+), and efficiencies

were estimated from the slopes of four-step, serial 1:5 dilution

standard curves.

Determination of mRNA half-life
The mRNA half-life measurement procedure was adapted from pub-

lished protocols (Duffy et al, 2015; Chan et al, 2018). Asynchronous

S. pombe cultures were grown to a final density of approximately

0.7–0.9 × 107 cells/ml at 30°C in EMM with 0.45 mM uracil and

1.5 mM leucine before collection. 4-thiouracil (4tU) in DMSO
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(Chem-Impex International, CMX-21484) was added at 5 mM final

concentration (Eser et al, 2016). Cells (5 × 107 cells per sample)

were collected by centrifugation, immediately flash-frozen in liquid

nitrogen, and stored at −80°C before processing. Samples were col-

lected from the culture before addition of 4tU (time = 0) and at a

series of time points after. For use as a spike-in control, S. cerevisiae

cultures were grown to a final density of 1.4–3.7 × 107 cells/ml in

YPD at 30°C, flash-frozen, and stored at −80°C.
RNA extraction was performed as above except flash-frozen sam-

ples were initially resuspended in 600 μl TES buffer and 100 μl of

resuspended S. cerevisiae cells (approximately 5 × 107 cells) were

added as a spike-in control. Care was taken to add the same amount of

S. cerevisiae cells to all sample of a time series. After extraction, 200 μg
of total RNA was subjected to DNase treatment. Following DNase treat-

ment, 70 μg of RNA was biotinylated with MTSEA biotin-XX (Biotium,

90066) as previously described (Duffy et al, 2015; Chan et al, 2018).

50 μg of biotinylated RNA was subjected to oligo d(T) selection using

oligo d(T)25 magnetic beads (NEB, S1419S), substituting SDS and NaCl

for the recommended LiDS and LiCl. For streptavidin selection of

biotinylated RNA, 500 ng of the oligo d(T) selected mRNA was used.

25 μl of MyOne Streptavidin C1 Dynabeads (ThermoFisher, 65001)

were washed with 75 μl of 0.1 M NaOH two times, followed by a sin-

gle 0.1 M NaCl wash, and two additional washes with Buffer 3

(10 mM Tris HCl pH 7.4, 10 mM EDTA, 1 M NaCl). Streptavidin beads

were blocked by resuspension in 50 μl of Buffer 3 and 5 μl of 50x Den-

hardt’s reagent. Beads were incubated for 20 min with gentle agitation.

Following blocking, beads were washed with 75 μl of Buffer 3 four

times and resuspended in 75 μl of Buffer 3 with 4 μl of 5 M NaCl.

500 ng of mRNA was added to the beads and gently agitated for

15 min. Following incubation, beads were washed with 75 μl of Buffer
3 prewarmed to 65°C, once with Buffer 4 (10 mM Tris–HCl pH 7.4,

1 mM EDTA, 1% SDS) and twice with 10% Buffer 3. All flow-through

was pooled before addition of 20 μg of linear acrylamide (Thermo-

Fisher) followed by ethanol precipitation.

Expression relative to the time = 0 sample was quantified using

qPCR as described above except 50 ng of recovered unlabeled

mRNA was used in the Superscript IV cDNA synthesis reaction and

a single reference gene (S. cerevisiae ACT1 from the spiked in

S. cerevisiae cells) was used to normalize expression.

To estimate mRNA half-lives (HL), several different exponential

decay models (adapted from (Chan et al, 2018)) were initially fit to

each time series using nonlinear least squares regression:

fit 1 ¼ 2
�t=HL

fit 2 ¼ efficiency � 2�t=HL þ 1� efficiencyð Þ

fit 3 ¼ mRNA0 � 2�t=HL

Fit 1 is a simple one-phase exponential decay model. Fit 2 incorpo-

rates an efficiency parameter to accommodate that mRNA levels

may not decay to zero (Chan et al, 2018). Finally, to accommodate

the effects of noninstantaneous labeling by 4tU on the decay curve,

the fit 3 model was fit without the time = 0 measurements and

instead allowed the mRNA level at time = 0 to be estimated as a

separate free parameter (mRNA0). Qualitatively, fit 3 consistently

fit the time series best, but all models yielded similar results. To

test for statistically significant differences in mRNA half-lives

between ste13+ and ste13Δ genotypes, we therefore proceeded with

the fit 3 model, which was linearized, resulting in the equation

ln mRNAtð Þ ¼ ln mRNA0ð Þ þ �ln 2ð Þ
HL

t

and was fit to the combined ste13+ and ste13Δ time series data for

each gene (excluding time = 0) using a general linear mixed

model. In the model, natural log transformed relative mRNA

expression was modeled as a function of the continuous fixed

effects variable time (minutes since 4tU addition), the categorical

fixed effect genotype (ste13+ vs. ste13Δ), the interaction of time

and genotype, and the random effect experimental replicate. The

random effect included both random slopes and intercepts to allow

the decay rate to vary across experimental replicates.

In the model, half-life is related to the change in expression with

respect to time by the formula HL ¼ �ln 2ð Þ=slope, where slope is

the time coefficient for the genotype coded 0 and the sum of the

time and interaction coefficients for the genotype coded 1. To sim-

plify the extraction of half-life estimates, models were fit with the

genotype coded both ways: first ste13+ = 0 and then ste13Δ = 0.

Half-life estimates for ste13+ and ste13Δ genotypes were derived

from the version of the model in which the genotype of interest was

coded zero using the formula �ln 2ð Þ= time coefficient½ �. Similarly,

the difference in half-life between the two genotypes was estimated

with the formula:

ln 2ð Þ � interaction coefficient½ �
time coefficient½ � � time coefficient þ interaction coefficient½ �ð Þ

Significance of the change in half-life due to the deletion of ste13+

was measured two ways. If the 95% bootstrap confidence interval

for the interaction coefficient excluded 0, the slopes of expression

with respect to time in the model, and thus half-lives, were consid-

ered to be different. Similarly, if the 95% bootstrap confidence

interval for the half-life difference excluded 0, the change was con-

sidered significant.

Codon usage bias calculations
The “Codon occurrence to mRNA Stability Correlation coefficient”

(CSC) for each codon was determined as in Presnyak et al (2015) by

calculating a Pearson’s correlation coefficient between the frequency of

occurrence of individual codons in S. pombe mRNAs and the half-lives

of these mRNAs. Coding sequences for S. pombe (protein-coding

genes, excluding dubious and transposons) were downloaded from

Pombase (ASM294v2.62, Release date 2017-01-30) (Lock et al, 2019).

From this list, we excluded “Genome location: mitochondrial,”

“Genome location: mating_type_region,” and “sequence error in

genomic data” (PBO:0000129). Five genes lacking start or stop codons

were additionally excluded, resulting in a final list of 5,016 genes. We

used mRNA half-life data from either Hasan et al (2014) or Eser et

al (2016), which are the most recent and comprehensive datasets for

S. pombe. Of the 5,016 genes in our list, 4,615 were measured in at

least one study and 3,900 in both. Both studies used metabolic labeling

and the half-lives correlate with each other (Pearson’s correlation coef-

ficient 0.50; Spearman’s rank correlation 0.81).

A previous study (Harigaya & Parker, 2016) had used the Spear-

man’s correlation coefficient to determine CSC values for S. pombe,

because of outliers in the half-life data. We instead removed outliers
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from the half-life data and used the Pearson’s correlation coeffi-

cient. A comparison between the different strategies is shown in

Appendix Fig S4C and D. Our criteria for removing outliers were as

follows: (i) a value that was more than 10 interquartile ranges above

the upper quartile (which removed three genes, based on their value

in the Eser et al, 2016 data) and (ii) a deviation in rank position of

> 2,500 between the two datasets (which removed 13 genes). After

the removal of outliers, the Pearson’s correlation coefficient

between the two mRNA half-life datasets was 0.80, the Spearman’s

rank correlation 0.82. Using either the Hasan et al, 2014 or the Eser

et al, 2016 half-life data for CSC calculation yielded highly similar

results (Appendix Fig S4C and D). When not otherwise indicated,

CSC values obtained from Eser et al, 2016 (the more recent study)

were used. The CSCg value for each gene was determined as the

arithmetic mean of all codons, excluding the stop codon.

The percentage of optimal codons based on the “classical transla-

tional efficiency” (cTE) used the optimality table for S. pombe from

Pechmann & Frydman (2013). For tAI (tRNA adaptation index), we

used the values determined by Tuller et al (2010) and also reported in

Pechmann & Frydman (2013). The tAIg value for each gene was deter-

mined as the geometric mean of all codons, excluding the stop codon.

CSC values for budding yeast were taken from Carneiro et

al (2019) and only values derived from mRNA half-life measure-

ments within the last 10 years were included (Becskei: Baudrimont

et al, 2017; Coller: Presnyak et al, 2015; Cramer: Sun et al, 2012;

Gresham: Neymotin et al, 2014; Struhl: Geisberg et al, 2014; Weis:

Munchel et al, 2011). CSC values derived from the Struhl study are

shown in gray in Appendix Fig S7, since they differed from the ones

based on the other mRNA half-life datasets (Carneiro et al, 2019).

CSC values for human cells were taken from Wu et al (2019),

Narula et al (2019), and Forrest et al (2020). CSC values from the

Forrest study are shown in gray in Appendix Fig S7, as they were

based on fewer mRNA half-life data and differed from the other two

studies in their trend. The multiple CSC values from Wu et al (2019)

and Narula et al (2019), respectively, were averaged, and the mean

value obtained in each study was used. Mad1 and Mad2 sequences

from opisthokonts were taken from Vleugel et al (2012). The human

Mad1 sequence was swapped for the canonical isoform (UniProt,

Q9Y6D9, MD1L1_HUMAN), the S. pombe Mad1 sequence was

shortened N-terminally by 13 amino acids to start with what is now

considered the correct start codon (pombase.org). All sequences

shorter than 600 amino acids were omitted for Mad1. Protein

sequences were aligned using MAFFT (G-INS-I, using DASH and

Mafft-homologs [100 homologs, E = 1e-30]) (Katoh et al, 2019).

Sequences from all species other than S.c., S.p., and H.s. were

deleted for the display of conservation shown in Appendix Fig S7.

The moving average of CSC values across nine codons was plotted

along the length of the aligned sequence. The null distribution of

the moving average was obtained by randomizing the codon order

10,000 times. Observed values that deviated by more than two stan-

dard deviations from the null mean were marked with filled circles.

Gene expression model—Simulations and theoretical predictions
Protein noise predictions (Fig 2C; Appendix Fig S2B and C) were

made by assuming a constitutively active promoter, and only con-

sidering stochastic mRNA and protein synthesis and degradation

and ignoring cell growth and division. The coefficient of variation

(CV = standard deviation/mean) for protein is calculated as:

CVP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

P
þ 1

M

kdegP

kdegP þ kdegM
� �

s

where P is the mean protein number per cell,M the mean mRNA num-

ber per cell, kdegM the mRNA degradation rate, and kdegP the protein

degradation rate (Swain, 2004). For the predictions in Appendix Fig

S2C, we assumed a mean protein number of 6,000 per cell, mean

mRNA numbers of 1 to 1,000, and we varied RNA degradation rate in

a range corresponding to half-lives of 1 to 60 min, and protein degrada-

tion rate in a range corresponding to half-lives of 15 to 600 min, which

we consider a physiologically plausible range. Predictions were

excluded when mRNA synthesis or protein synthesis rates became

unrealistically high. We assumed this to be the case when mRNA syn-

thesis rate was higher than 25 min−1 or protein synthesis rate higher

than 20 mRNA−1 min−1. Assuming a gene with characteristics similar

to a SAC gene (mean protein number = 6,000, mean mRNA num-

ber = 3.5, protein half-life = 360 min, mRNA half-life = 4 min) yields

a CV prediction of 0.0575. In the figure, we labeled CV predictions less

than 0.06 in light gray (low noise) and those equal or higher than 0.06

in dark gray (high noise).

The stochastic simulation of mRNA and protein numbers (Fig 2B)

used the same simple underlying model and the Gillespie algorithm in

a Matlab script written by Daniel Charlebois and available on Math-

Works (“Gillespie’s Direct Method Stochastic Simulation Algorithm“).

Statistical tests
Data processing performed in R used the packages tidyverse (Wick-

ham et al, 2019), alphashape3d, boxcoxmix, broom, broom.mixed,

DescTools, geometry, Irescale, mclust, nabor, plyr, readxl, rgl, sf,

shotGroups, and spatstat. Statistical tests were performed in Prism

(GraphPad), or in R using the packages lme4 (Bates et al, 2015),

MASS, pbkrtest, and stats. Figure plots were generated in Prism

(GraphPad) or in R using the packages Cairo, cowplot, egg, ggplot2,

gridExtra, plotly, and lemon.

General linear mixed models and generalized linear mixed mod-

els were fit using the functions “lmer” and “glmer,” respectively,

from the lme4 package. Default function settings were used except

for the optimizer in “glmer,” which was set to “bobyqa.” Bootstrap-

ping using the function “bootMer” (10,000 replicates, lme4 package)

was used to obtain 95% confidence intervals for fixed effects model

coefficients and mRNA half-life estimates, and 95% confidence

bands for predicted regression curves. Wilcoxon rank sum tests,

and t-tests were performed using “wilcox.test” and “t.test,” respec-

tively, from the package stats. Poisson distributions were fit to data

frequency distributions using “fitdistr” from the package MASS.

Sample sizes were not predetermined. Blinding was not per-

formed, as most analyses were run in an automated fashion.

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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