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ABSTRACT Contrasting most known bacterial motility mechanisms, a bacterial sliding motility discovered in at least two gram-
positive bacterial families does not depend on designated motors. Instead, the cells maintain end-to-end connections following
cell divisions to form long chains and exploit cell growth and division to push the cells forward. To investigate the dynamics of this
motility mechanism, we constructed a mechanical model that depicts the interplay of the forces acting on and between the cells
comprising the chain. Due to the exponential growth of individual cells, the tips of the chains can, in principle, accelerate to
speeds faster than any known single-cell motility mechanism can achieve. However, analysis of the mechanical model shows
that the exponential acceleration comes at the cost of an exponential buildup in mechanical stress in the chain, making overly
long chains prone to breakage. Additionally, the mechanical model reveals that the dynamics of the chain expansion hinges on a
single non-dimensional parameter. Perturbation analysis of the mechanical model further predicts the critical stress leading to
chain breakage and its dependence on the non-dimensional parameter. Finally, we developed a simplistic population-expansion
model that uses the predicted breaking behavior to estimate the physical limit of chain-mediated population expansion. Predic-
tions from the models provide critical insights into how this motility depends on key physical properties of the cell and the sub-
strate. Overall, our models present a generically applicable theoretical framework for cell-chain-mediated bacterial sliding
motility and provide guidance for future experimental studies on such motility.
SIGNIFICANCE Most known bacterial motility mechanisms rely on designated motors. This work, however, investigates
the bacterial sliding motility driven by growing cell chains. This motility mechanism could bring advantages in both
performance and efficiency: it can potentially reach very high speeds yet does not require any energy input other than what
is already used for cell growth. We modeled the mechanical dynamics of a growing cell chain and revealed a mechanical
limit of the chain-mediated motility. The models provide a predictive theoretical framework for future studies of chain-
mediated motility, which is likely more widespread among gram-positive bacteria than is currently recognized.
INTRODUCTION

Cell motility allows a cell to adapt better to its environment
by moving toward nutrients or away from hazards and al-
lows a cell colony to spread faster and occupy a larger space.
In the bacterial kingdom, cell motility is driven by an amaz-
ingly diverse spectrum of mechanisms (1–4). The most
well-studied mechanism is the bacterial flagellum, a long
helical filament that rotates to propel bacterial swimming
in liquid mediums (5-7). Another well-studied mechanism
is the type IV pilus, which extends from the cell body and
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attaches to a surface before retracting in order to propel
the bacterium on substrates (8–12). Other examined mecha-
nisms include Mycoplasma gliding motility, which relies on
hundreds of individual motors protruding from the cell sur-
face and exerting power strokes against the substrate surface
(13–17), myxobacterial gliding motility driven by motors
that exert forces between an internal helical track and the
external substrate (18-21), Spiroplasma swimming based
on propagation of a kink down the helical-shaped cell
body (22–24), etc.

All of the bacterial motility mechanisms exemplified
above rely on designated molecular motors that consume
chemical energy to generate specific modes of mechanical
motion and drive single-cell movement. Unlike these mech-
anisms, many bacteria can exploit the expansive force
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produced by cell growth and division to push on their neigh-
bors, resulting in a ‘‘sliding’’ motility that greatly promotes
spreading of the bacterium (25-27). Bacterial sliding has
been studied intensively in the context of two-dimensional
(2D) biofilm expansion, with popular model organisms
such as Bacillus subtilis and Vibrio cholerae. Growing bac-
terial biofilms exhibit a number of complex morphological
dynamics, including verticalization (28-30), wrinkling (31-
33), 2D-to-3D transitions (29,34,35), etc. These dynamics
hinge on mechanical interactions among the cells, and
many mathematical models have provided valuable insights
into how the mechanical dynamics control morphological
changes in these biofilms (28,30-41).

Effective sliding motility is typically facilitated by addi-
tional cellular factors like secreted surfactants or exopoly-
saccharides (25). Interestingly, in several gram-positive
bacteria, such as Clostridium perfringens (42–44), Clos-
tridium beijerinckii (44), and Clostridioides difficile (11),
the sliding motility relies on strong end-to-end connections
between daughter cells following cell divisions (42–46).
Over multiple cell cycles, long chains consisting of
numerous cells form. As the cells in the chain grow and
divide, they push each other—this interaction between
neighboring cells results in a collective behavior that ex-
pands the chain and drives the free tip(s) of the chain for-
ward. Although not requiring any designated energy input
other than what is already used for cell growth, the cell-
chain-mediated motility can potentially be faster than any
single-cell motility mechanism. This is because the number
of cells in a chain grows exponentially due to periodic
doubling, and consequently, the expansion of the chain as
a whole is also expected to accelerate exponentially in
time. As a result, the free tips of the chains can, in principle,
reach very high speeds. This potentially facilitates the fast
penetration of C. perfringens, the first bacterium that we
know is associated with this cell-chain-mediated motility
(42–44), into local zones of patient tissues during the infa-
mous gas gangrene infection it causes (47).

Compared with 2D expansion of biofilms consisting of
disconnected cells, cell-chain-mediated sliding provides
stronger directionality and is hence more efficient in moving
the cells over distances. However, most previous studies on
bacterial chains have focused on the morphological changes
of the chain over time, using chained Bacillus subtilis as a
model system (48–53). In this work, we focus on studying
how the chain-mediated bacterial sliding performs as a
mode of motility, especially in Clostridia (42–46).

As the cell-chain-mediated sliding motility hinges on
strong cell-cell connections (43,44), the strength of these
connection may pose a limit on the motility. To evaluate
such a mechanical limit, in this work we developed a phys-
ics-based mathematical model to investigate the mechanical
dynamics of a growing cell chain. For simplicity, our model
focuses on the growth of a single, isolated chain of bacterial
cells. The model describes fundamental forces governing
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the motion of cells in a chain, including the internal growth
forces of individual cells, the constraint forces that maintain
end-to-end connections between adjacent cells, and the drag
forces due to the relative motion between the cells and the
substrate. The model shows that the stress between adjacent
cells increases exponentially over time and peaks at the cen-
ter of a chain. Performing a perturbation analysis on the
model, we evaluated the mechanical limitation of the chain
growth, predicting how long a chain can grow before the
stress between adjacent cells builds to an unsustainable level
that causes the chain to break. Finally, we developed a
simplistic model to evaluate the effect of the mechanical
limitation of chain growth on the expansion of the bacterial
population. Results from the model inform how the rate of
expansion depends on the physical parameters that govern
the dynamics of chain growth and provide testable predic-
tions. Of note, our models readily apply to any bacteria
that achieve motility based on growing cell chains, whether
the motility occurs on solid surfaces or in liquid media.
Overall, our models provide a fundamental theoretical
framework for investigation of cell-chain-mediated bacte-
rial motility.
MATERIALS AND METHODS

Modeling mechanical dynamics in a growing cell
chain

Because growing cell chains rely on clearly defined physical constraints,

i.e., the connections between adjacent cells, we can analyze the forces

required to push the cells forward in a chain without knowing any details

of the molecular mechanism. Hence, we chose to start our investigation

with mathematical modeling of the mechanical dynamics of single chains

of rod-shaped bacteria. Specifically, we designed the model to investigate

the interplay of various forces acting on the bacterial cells forming the

chain. The key assumptions of this mathematical model are summarized

below and in Fig. 1. A more detailed description of the mathematical model

can be found in Section S2 of the supporting material.

� A chain consists of cells that are rigid, inflexible rods (Fig. 1 A). Adjacent

cells in the chain are mechanically connected at their ends and therefore

are physically constrained by one another.

� Each pair of adjacent cells are joined by an angular spring that exerts a

torque on the two cells and forces them to align. The angular springs

have a potential energy of Eb;i ¼ 1
2
kbðqiþ1 � qiÞ2 (Fig. 1 B).

� The cell experiences an anisotropic viscous drag force from the substrate.

Fig. 1 C and D shows the decomposition of velocities and drag forces

used in this anisotropic implementation (54,55).

To depict the growth dynamics of individual cells, we assumed that the

cell length increases exponentially in time (Eq. S1) (56,57), and once the

cell length doubles, cell division occurs, and the cell length halves

(Fig. 1 A, inset). Furthermore, we assumed that all cells in the chain operate

with synchronized cell cycles, i.e., having the same length at all times and

dividing simultaneously. These assumptions capture the exponential accel-

eration of the cell-chain-mediated motility while greatly simplifying the

mathematical analyses to be shown below. The qualitative conclusion of

the model does not rely on these convenient assumptions though.

We used the Lagrangian mechanics formalism to derive the differential

equations that describe the movement of bacterial cells in an expanding

chain (Eqs. S13–S15). Details of the derivation of these equations are



FIGURE 1 Mechanical model for a single growing cell chain. (A) Variables in the model. Cells form chains due to strong end-to-end connections between

adjacent cells. In the mathematical model, the cells in the chain are uniquely described by their center of mass coordinate, (xi,yi), and their angle from the

horizontal line, qi. The inset provides an example of the temporal change of the length of a single cell over multiple cell cycles. The length of each cell

increases exponentially with rate r, liðtÞ ¼ l0e
rt , until the length is double the cell length at the beginning of the cycle, i.e., 2l0. At this point, the cell divides

into two daughter cells, each with length l0, and the cycle is repeated. (B) Bending between adjacent cells is modeled as an angular spring located at the

linkage between the cells. Eb,i is the potential energy of the angular spring. The angular spring results in a torque that attempts to push the cells toward align-

ment. (C) Viscous drag from the substrate is decomposed into an anisotropic translational drag force. The velocity of the cell is decomposed into x and y

components, which are further decomposed into parallel and perpendicular velocity components. Due to the rod shape of the cell, the parallel translational

drag is expected to be smaller than the perpendicular drag (supporting material, Section S2.1). (D) A rotational drag torque is exerted on the cell in the di-

rection opposite the angular velocity of the cell’s rotation about its center of mass. The relations between the two translational drag coefficients and the rota-

tional drag coefficient are governed by the physics of viscous drags, with the estimation given in the supporting material, Section S2.1. To see this figure in

color, go online.
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provided in Section S2.2 of the supporting material. Strikingly, nondimen-

sionalizing these differential equations (Eqs. S22–S24) reveals a nondimen-

sional parameter,

J ¼ kb
ml30r

; (1)

which relates the key physical parameters, including the daughter cell

length l0, the growth rate r, the angular spring constant kb, and the parallel

drag coefficient per unit length m. In the following sections, we will analyze

these differential equations both analytically and numerically in order to

quantify the dynamics of the forces governing the expansion of these chains

and investigate the mechanical limitation on chain expansion.
RESULTS

Chain-mediated sliding motility is widely
observed in gram-positive, rod-shaped bacteria

We first observed cell-chain-mediated sliding motility in the
pathogen C. perfringens (42–44). Although C. perfringens
was once believed to be a nonmotile bacterium (58), it
can penetrate human muscle tissues by several centimeters
per hour and cause acute gas gangrene infections with a
nearly 100% mortality rate if not treated (47). It was lately
discovered that, when starved, C. perfringens cells form
long chains through maintaining strong end-to-end connec-
tions between daughter cells following cell divisions (42–
46). These chains often extend from a colony of
C. perfringens (cf. Video S3 of (43)) but can also grow
from a single isolated cell (Videos S1 and S2). Such cell-
chain-mediated motility hinges on a strong connection be-
tween neighboring cells (43,44). Although C. perfringens
possesses type IV pili (11,44,59,60), the pili themselves
are not required for its motility. The chain-mediated motility
allows fast and often asymmetric expansion of the bacterial
colony on the substrate surface (42,43,46). We also found
Clostridium beijerinckii (44) and Clostridioides difficile
(11) exhibiting a similar sliding motility driven by the for-
mation of long bacterial chains. Notably, another group of
gram-positive bacteria, the bacilli, in particular, Bacillus
subtilis and Bacillus megaterium, also exhibit similar
chain-mediated sliding motility under comparable experi-
mental conditions (Fig. S1; Videos S3 and S4). Taken
together, it is likely that the cell-chain-mediated sliding
motility is widespread among gram-positive, rod-shaped
bacteria.

Likely widespread, the dynamics and efficacy of the cell-
chain-mediated sliding motility are worth investigating. In
this work, we addressed the question with mathematical
modeling. While the models we developed are generally
applicable to any bacteria utilizing the cell-chain-mediated
motility, here we used C. perfringens as our experimental
model organism, on which all the quantitative experiments
were conducted.
Stress in the cell chain is unsustainable due to
exponential increase

Applying the rigid-rod model to a perfectly straight chain of
cells reveals key behaviors of the stress in the chain over
time. Given a perfectly straight chain that starts with N cells,
each with length l0 at the beginning of a cell cycle, the total
length of the chain as a function of time is given by LðtÞ ¼
Nl0e

rt. (Because a cell division does not alter the summed
length of the two daughter cells, the total length of the chain
appears to grow continuously in an exponential manner. The
exponential function partly reflects the exponential increase
of cell length and partly the exponential increase of cell
number.) A given cell-cell linkage divides the chain into
two pieces with lengths l1(t) ¼ qL(t) and l2(t) ¼ (1 � q)
L(t), where q denotes the relative position of the linkage
Biophysical Journal 121, 2461–2473, June 21, 2022 2463
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in the chain (Fig. 2). Since all cells in a perfectly straight
chain lie parallel to the x axis, the y components of the
stresses must all be zero by symmetry. Solving the equations
of motion in our model yields an analytical expression for
the stress in the x direction at each cell-cell linkage:

Fðt; q;N;m; r; l0Þ ¼ 1

2
qð1� qÞN2ml20re

2rt: (2)

The most revealing information from Eq. 2 is that the
stress grows exponentially in time (Fig. 2 A). Note that
although this exponential increase in the stress is derived
from the exponential growth of individual cells, the latter
is not essential, as periodic doubling of the number of cells
in the chain alone can result in an exponential increase in the
stress, regardless of the detailed dynamics in individual
cells. It is essentially the exponential increase of the cell
number in the chain that causes the exponential increase
in the stress. In light of this finding, while the exponential
growth of cell number allows a chain to expand exponen-
tially, this fast mode of expansion must be unsustainable,
given that the stress in the chain also increases exponen-
tially. Exceedingly high stress in a cell-cell linkage would
cause the linkage to fail and the chain to break into shorter
chains. The shorter chains will then expand at a slower rate,
limiting the speed with which the cells at the tip of the chain
can move and the cell population can expand spatially.

Equation 2 also suggests that the stress is largest at the
center of the chain and decreases in the joints closer to the
free tips of the chain (Fig. 2 B). Accordingly, one would
expect a chain with two free ends to break most likely in
the middle. This was indeed observed in our experiment:
58% of experimentally observed C. perfringens chains
broke within 10% of the center of the chain (Fig. 2 C),
with a typical example shown in Video S1.

So far, our model has suggested that a mechanical limit
exists for the cell-chain-mediated sliding motility. In the
FIGURE 2 Stress in a straight chain increases exponentially and is largest in th

a function of time over the course of three cell cycles. The chain consists of two c

the third cell cycle. Results were calculated using Eq. 2. (B) The stress as a funct

defines the relative position of the linkage in the chain, where q¼ 0 corresponds

Parameter values used in (A) and (B): l0 ¼ 5 mm, r ¼ 0.02 min-1, kb ¼ 500 pN mm

imentally observed C. perfringens chains. The locations are reported using the

0 and 0.5, given the symmetric nature of the chains and arbitrary choice of wh
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following two sections, we will quantitatively evaluate the
limit and determine its effect on the spatial expansion of
the bacterial population.
Cell chains break at a critical stress

In this section, we used the rigid-rod model to estimate the
critical stress that causes a growing cell chain to break. A
cell chain breaks when a cell-cell linkage snaps due to be-
ing overly bent, as experimentally observed in
C. perfringens doublets that happened to be stuck to the
substrate at their free ends (Video S5). We first simulated
the rigid-rod model to examine the dynamic process lead-
ing to a break event. Because a perfectly straight cell chain
will never bend in our deterministic model, we initiated the
model simulation with a straight chain with a slightly
kinked center linkage. In the simulated chain dynamics
(Video S6), as the chain elongated and stress built up,
the kinked center linkage of the chain started to bend
severely after a while. In the model, the cell-cell linkages
were perpetually maintained, causing the cells surrounding
the center linkage to also tilt. In reality, however, a linkage
would snap when bent over a limit (Video S5). After the
most stressed center linkage snaps, stress is immediately
reduced in the nearby linkages (as they are now close to
a free tip), and the tilted parts of the chain will likely be
straightened by the angular spring forces. Most impor-
tantly, the simulation result (Video S6) displays a transition
from a phase in which the chain smoothly grew to a phase
in which the angle of the center linkage increased in an
accelerating manner. This result reveals a general path to
mechanical instability and chain breakage in the system:
if the angle of a cell-cell linkage in the chain starts to in-
crease, the system passes a point of no return, followed
soon by over-bending and breakage of the linkage.

In light of the finding above, we devised a perturbation
analysis for the model to evaluate the critical stress that
e center linkage. (A) The stress in the linkages of a perfectly straight chain as

ells in the first cell cycle, four cells in the second cell cycle, and eight cells in

ion of location in a perfectly straight chain. The location index, 0% q% 1,

to the left tip of the chain and q¼ 1 corresponds to the right tip of the chain.

, and m ¼ 5 pN min/mm2. (C) The distribution of break locations in exper-

relative location index q with all values mapped onto the interval between

ich end corresponds to q ¼ 0. To see this figure in color, go online.
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causes the angle of a cell-cell linkage to start increasing in a
growing cell chain. Particularly, we consider a chain slightly
perturbed from the straight geometry: all cells lie parallel to
the x axis except for two adjacent cells, which are tilted
away from the x axis by a small angle. The linkage between
the two tilted cells is called the perturbed linkage, and the
size of this perturbation is the angle Dq between the two
tilted cells (Fig. 3 A). A perfectly straight chain of cells is
considered the ‘‘steady state’’ in the analysis, and the chain
with the two tilted cells is the ‘‘perturbed state’’ (Fig. 3 A).
The perturbed state mimics small perturbations that would
occur in reality due to bumps in the substrate, random fluc-
tuations in cell growth, etc. The fate of the perturbed system
can be predicted by examining the instantaneous rate of
change of the perturbation angle D _q in a perturbed state
with a given Dq. If D _q> 0, then the size of the perturbation
is increasing, and the system is moving away from the
perfectly straight steady state (Video S7). This will soon
lead to over-bending of the linkage and breakage of the
chain. If D _q< 0, then the size of the perturbation is
decreasing, and the system is moving toward the perfectly
straight steady state (Video S8). In this case, the chain
‘‘survives’’ the perturbation. Note that D _q< 0 only means
that the chain will not immediately over-bend and break;
as the chain further grows, the stress will eventually exceed
the limit, causing the chain to break. In other words,
D _q ¼ 0 marks the critical point when a small perturbation
can escalate to chain breakage shortly.

Furthermore, to evaluate D _q for linkages under different
stresses, we consider the center linkage in chains with
different numbers of cells. According to Eq. 2, longer chains
with more cells experience higher stress at the center link-
age than shorter chains with fewer cells. Computation of
the instantaneous D _q using the rigid rod model reveals
that D _q increases with the length of the chain and changes
sign at the same chain length for different sizes of perturba-
tion, Dq (Fig. S2). Replotting the computed D _q against the
stress in the corresponding cell-cell linkage in the perfectly
straight steady state reveals the ‘‘critical stress’’ that differ-
entiates the fate of the perturbed chain (Fig. 3 B).

Alternatively, we could vary the stress in the perturbed
linkage by imposing the perturbation at different locations
FIGURE 3 Perturbation analysis provides an es-

timate of the critical breaking stress as a function

of the physical parameters. (A) Definition of the

system’s states used in the perturbation analysis.

The steady state in our perturbation theory is a

perfectly straight chain (top). The perturbed state

deviates from the perfectly straight steady state

only in one kinked cell-cell linkage (bottom). Dq

is used to define the size of the perturbation.

D _q> 0 corresponds to the system moving away

from the perfectly straight steady state, while

D _q< 0 corresponds to the system moving toward

the steady state. (B and C) The horizontal stress

in a perfectly straight chain at the to-be-perturbed

linkage is plotted against the instantaneous rate

of change of the angle upon perturbation for

various perturbations sizes (B) and various pertur-

bation locations in the chain (C). The stress in the

linkage is varied by varying the length of the chain.

D _q transitions from a negative value to a positive

value as the stress increases past a critical stress

that is identical for all perturbation sizes (B) and

all perturbation locations (C). The computations

for (B) and (C) used J ¼ 40. The nondimen-

sional parameter J is defined by Eq. 1. (D) The

computed critical stresses as a function of J.

The critical stress depends linearly on J. The

black line shows the linear function fitted to the

computed data. (E) The critical breaking number

(of cells in the chain), i.e., the nondimensionalized

chain length at which breaks occur, varies as a

function of the nondimensional parameter J. In

C. perfringens, breaks are typically observed to

occur for chains with 10–50 cells (Fig. S3), sug-

gesting that the physical range of J for

C. perfringens is 1<J< 100. The same range is

marked on (D), and zoom ins of the plots in this

range are shown in the insets of (D) and (E). To

see this figure in color, go online.
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in a chain. Recall that the stress is highest at the center of the
chain and decreases toward the tip of the chain (Eq. 2; Fig. 2
B). When D _q is computed for chains of different lengths per-
turbed at different relative locations (different q values), the
stress-versus-D _q curves for different locations perfectly
overlap (Fig. 3 C). This result and those above confirm
that the instantaneous horizontal stress at a given linkage
in a perfectly straight chain is sufficient to determine
whether the chain will break immediately when perturbed
at the linkage.

The critical stress that causes the chain to break depends
on the physical parameters that govern the dynamics of the
system. Most key physical parameters of the system are
coupled through the nondimensional parameter J ¼ kb=
ml30r, which was revealed through nondimensionalization
of the rigid rod equations (supporting material, Section
S2.2) and relates the angular spring constant kb, parallel
drag coefficient per unit length m, daughter cell length l0,
and growth rate r. We computed the critical stress associated
with various values of J using the process outlined above
(method described in supporting material, Section S3) and
found a linear relationship between the critical stress and
J (Fig. 3 D). Performing a linear fit on the data provided
the nondimensionalized critical stress as a function of J:
F�
crit ¼ mJþ z, with m¼ 3.49 and z¼ 0.42. Additionally,

longer chains experience larger stresses, and hence a larger
critical stress value corresponds to a longer breaking length
for a chain. Note that the nondimensionalized critical stress
and nondimensionalized breaking length are related by
Lcrit=l0 ¼ �

8Fcrit=mrl
2
0

�1=2
(from Eq. 2 with t ¼ 0 and

Lcrit ¼ Ncritl0). Hence, the nondimensionalized breaking
length scales roughly with J1=2 (Fig. 3 E, inset). In
C. perfringens, experimental observations suggest that
chains typically break when the number of cells in the
chains falls in the range 10(N(50 (Fig. S3). This predicts
a range of J values for C. perfringens chains to be 1 %
J% 100 (Fig. 3 D, E, red boxes and insets). Overall, the
critical stress and typical breaking length of the cell chain
both increase as the nondimensional parameterJ increases.
FIGURE 4 Predicted critical breaking stress Fcrit and length Lcrit as functions o

in a biphasic manner with respect to the cell length l0. (B) The breaking stress incr

The breaking stress and length increase as the angular spring constant kb increase

coefficient per unit length m, while the breaking length decreases. All plots gen

whenever a parameter is held fixed: l0¼ 5 mm, r¼ 0.02 min-1, kb¼ 500 pN mm, m

denoted with black dots in each plot and correspond to J ¼ 40. The range fo

parameter. (B)–(D) span the range of 1 < J< 100. To see this figure in color,
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The critical stress and breaking length also depend on two
additional coefficients a and b (supporting material, Section
S3), which relate the perpendicular and rotational drag coef-
ficients to the parallel drag coefficient. However, variation in
these parameters results in only a small variation in the pre-
dicted critical stress and breaking length (Fig. S4). These
small variations and the fact that a and b are physically
restricted to a small range of values make the dependence
of the critical stress and breaking length on a and b negligible.

Next, we re-dimensionalized the predicted linear relation-
ship between the nondimensionalized critical stress and J
and obtained the relationship between the critical stress
and all of the key physical parameters:

Fcrit ¼ m
kb
l0
þ zmrl20: (3)

Furthermore, setting the dimensional critical stress equal
to Eq. 2 from the rigid-rod model, we can determine the crit-
ical breaking length as a function of all of the key physical
parameters:

Lcrit ¼
�
8

�
m

kb
mrl0

þ zl20

��1=2
: (4)

Equations 3 and 4 provide insights to how the critical stress
and breaking length scalewith each physical parameter. First,
and most interestingly, the critical stress and breaking length
depend on l0 in a biphasic manner (Fig. 4 A). This is because
the critical stress and breaking length are contributed by two
terms with opposite dependence on l0 (Eqs. 3 and 4). With
strong cell-cell linkages (large kb) or low drag (small m), me-
chanical integrity of the chain is strengthened by smaller cell
lengths, and vice versawithweak cell-cell linkages (small kb)
or high drag (large m). Second, the critical stress increases,
while the breaking length decreases, with increasing cell
growth rate r (Fig. 4 B). These opposite trends can be under-
stood as faster cell growth results in higher cell velocities at
the same chain length and requires larger stresses to propel
f each physical parameter. (A) The breaking stress and breaking length vary

eases as the growth rate r increases, while the breaking length decreases. (C)

s. (D) The breaking stress increases for substrates with a larger parallel drag

erated according to Eq. 4. The following default parameter values are used

¼ 5 pN min/mm2,m¼ 3.49, and z¼ 0.42. The default parameter values are

r l0 in (A) was chosen to display the biphasic nature of the relation for this

go online.
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the cells. In the end, although the critical stress increaseswith
faster growth rate r, it will be reached at a shorter chain
length. Third, the critical stress and breaking length both in-
crease with the angular spring constant kb for the cell-cell
linkages (Fig. 4 C). This means that more rigid cell-cell link-
ages can withstand larger forces and allow the chains to grow
to longer lengths. Lastly, the critical stress and breaking
length depend on the drag coefficientm similar to their depen-
dence on the cell growth rate r (Fig. 4 D). Evidently, higher
drag from the substrate would increase the stress in the link-
ages between adjacent cells. Like above, although the critical
stress increases with higher drag, it is reached at a shorter
chain length. In summary, understanding how the critical
breaking stress depends on the physical parameters provides
quantitative insights to the mechanical limitation of cell-
chain-mediated motility and provides experimentally test-
able predictions.
Breaks limit the long-term expansion rate of
bacterial chains

In the previous section, we showed that bacterial chains tend
to break if the stress at a cell-cell linkage exceeds a critical
level. Since the total growth rate of the bacterial chain is
given by L0ðtÞ ¼ Nl0re

rt ¼ LðtÞr, shorter chains grow
slower than longer chains. Hence, chain breakage will
reduce the expansion of the bacterial population into the sur-
rounding environment. To evaluate the effect of chain
breakage on the expansion of the bacterial population, we
developed a simplistic phenomenological model (Fig. 5 A)
that tracks the expansion and breakage of chains over
time, based on the critical breaking stress predicted in the
previous section. We then used the model to estimate the
effective expansion rate of the bacterial population driven
by the cell-chain-mediated mechanism.

The phenomenological population-expansion model aims
at a rough estimation of the chain expansion rate and only
considers expansion in one dimension. Particularly, the
model assumes that all the chains are perfectly straight
and that after a chain breaks, the resulting two chains remain
parallel and continue to expand from their respective free
tips (Fig. 5 A). Such an assumption was motivated by the
experimental observation that after a C. perfringens chain
breaks, the two new chains usually maintain lateral adher-
ence to each other during their following expansion (Video
S9). In the model, the chain is initialized with a small num-
ber of cells with the typical length of a daughter cell l0. The
individual cells in the chain grow exponentially and divide
simultaneously. Over time, the chain grows longer and ex-
pands outward, while the stress in each cell-cell linkage
rises. Once the stress in a linkage exceeds the critical stress
F�
critðJÞ predicted by the rigid-rod model above, the chain

will break at the linkage and divide into two shorter chains,
each expanding in both directions (Fig. 5 A). Overlap be-
tween the two new chains reduces the overall efficiency of
expansion of the bacterial population, since multiple cells
are now exploring the same region. Over long periods of
time, this pattern repeats itself. Eventually, the system
comes to consist of numerous overlapping chains expanding
into their surroundings.

The model tracks the expansion distance of the bacterial
population, which is defined as the distance from the left-
most chain tip to the rightmost chain tip (Fig. 5 A). Let us
first consider the noise-less case, in which all the cell-cell
linkages are equally strong, and the cell cycles are perfectly
synchronized. In this case, the break always occurs in the
center linkage at the predicted critical breaking length; the
two new chains will each have a length equal to half of
the critical breaking length. Consequently, as the population
grows, the expansion distance increases exponentially until
the first break occurs (Fig. 5 B). The break induces an abrupt
drop in the expansion rate (Fig. 5 C). Following the break,
the population is able to regain exponential expansion, but
the next chain break will again cut the expansion rate
of the population (Fig. 5 C). Over multiple cell cycles, these
periods of exponential growth followed by breakages
average out to a constant rate of expansion (Fig. 5 B and
C). Therefore, these results reveal a maximum population
expansion rate constrained by the mechanical limitation of
single-chain growth. We also considered simulations with
stochastic effects (supporting material, Section S4),
including asynchronous cell division and mechanical varia-
tions in the cell-cell linkages, but these effects did not
change the expansion rates significantly (Fig. S5).

The noise-less case further allows us to analytically
derive the expansion rate and determine its dependence on
the fundamental parameters in the system. In the noise-
less case, once a chain breaks in half, it will take exactly
one doubling time for the two smaller chains to each grow
to the critical breaking length. Therefore, breakage events
will always be separated by the doubling time t ¼ ln2=r.
Additionally, during each of these intervals, the leftmost
and rightmost chains in the population will always expand
further out by a distance of one-fourth the critical breaking
length, which sum up to an overall population expansion of
half the critical breaking length. From these values, we find
the expected relationship between the final average expan-
sion rate and the critical breaking length to be _D ¼
r Lcrit = 2 ln 2. Rearranged to the nondimensionalized
form, the relationship reads

_D

l0r
¼ Lcrit=l0

2 ln 2
: (5)

According to Eq. 5, the scaled expansion rate D_
l0r

and the
breaking number Lcrit/l0 should differ by only a constant
value. Plotting the scaled expansion rates from the simula-
tion against the critical breaking numbers indeed gives a
linear relationship between the two values with a slope of
(2 ln 2)-1, as predicted by Eq. 5 (Fig. 5 D). Recall that the
Biophysical Journal 121, 2461–2473, June 21, 2022 2467



FIGURE 5 Population-expansion model predicts expansion dynamics of a bacterial chain population. (A) Model setup. The initial chain grows with two

free ends expanding outward. Once the chain grows long enough, the stress in one of the linkages of the chain will exceed the critical breaking stress predicted

by the rigid-rod model. The chain will then break into two shorter chains, each with two free ends. The two separate chains both freely expand outward but

overlap with one another in the process. The overlap slows down the overall expansion of the bacterial population. (B) The expansion distance of the pop-

ulation as a function of time for a single run of the model withJ ¼ 1 in the noise-less case (i.e., perfectly synchronized cell cycle and identical strength of

cell-cell linkages).J ¼ 1 was chosen because the corresponding breaking length is small, making it easy to illustrate the expansion dynamics. Cell division

occurs at a fixed interval determined by the growth rate of the cells. The gray boxes depict configurations of the chains in the system at three different time

points. It should be noted that while it appears that chain breaks always occur right in the middle between division events, this is only a coincidence: chain

breaks can occur at any point in the cell cycle depending on the particular parameter set and initial conditions. (C) The expansion rate of the population as a

function of time for a single run of the model withJ ¼ 1 in the noise-less case. The expansion rate increases exponentially between breaks. The breakages

cause a drop in the expansion rate (exactly half after the first break). Over long periods of time, this pattern averages out to a constant expansion rate (dotted

black line). (D) The scaled expansion rate is proportional to the critical breaking number. This relationship is predicted analytically (red line) and numerically

through simulation (blue circles). (E) Analytically derived expansion rate as a function of J. To see this figure in color, go online.
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perturbation analysis of the rigid-rod model predicted the
critical breaking length as a function of J : Lcrit ¼
2l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðmJþ zÞp

. Combining this equation with Eq. 5 yields
a theoretical expression for the expansion rate as a function
of J (Fig. 5 E):

_D

l0r
¼ ½2ðmJþ zÞ�1=2

ln 2
: (6)

The scaled expansion rate increases as J increases, but
the curve flattens for larger values, indicating a diminishing
return in the expansion efficiency for larger values of J.

RememberingJ ¼ kb=ml
3
0r, we rearrange Eq. 6 to deter-

mine how the population expansion rate depends on each
physical parameter:

_D ¼ 1

ln 2

	
2

�
m

�
kbr

ml0

�
þ zr2l20

�
1=2

: (7)

The relationships between the expansion rate and the
physical parameters are summarized in Fig. 6. Most of these
relationships are similar to the predicted dependence of the
breaking number on the physical parameters (Fig. 4),
including a biphasic dependence on the cell length l0
(Fig. 6 A), a positive dependence on the angular spring con-
stant kb (Fig. 6 C), and a negative dependence on the drag
coefficient m (Fig. 6 D). Only the dependence on the cell-
growth rate r has turned positive in the expansion rate
(Fig. 6 B). These relationships suggest potential mecha-
nisms that bacteria may adopt to enhance long-term popula-
tion expansion driven by the cell-chain-mediated motility.
For example, stronger cell-cell linkage would apparently
promote the population expansion rate. Additionally, these
predicted relationships can be experimentally tested through
mutant strains or varied experimental conditions.
DISCUSSION

In this work, we found that cell-chain-mediated bacterial
sliding motility is likely widespread in gram-positive bacte-
FIGURE 6 Predicted population expansion rate as a function of each physical p

biphasic manner. (B) The expansion rate increases as the growth rate r increases.

(D) The expansion rate decreases as the parallel drag coefficient per unit lengt

default parameter values are used whenever a parameter is held fixed: l0 ¼ 5 m

z ¼ 0.42. The default parameter values are denoted with black dots in each plot

the biphasic nature of the relation for this parameter. (B)–(D) span the range of
ria and developed a novel physics-based mechanical model
(the rigid-rod model) to analyze its mechanical limitation.
The model depicts the fundamental processes governing
the chain growth, including cell growth, cell division, cell-
cell connection, and cell-substrate interaction. The model
shows an exponential increase in the stress at the linkages
between adjacent cells as the number of cells in the chain
grows exponentially. Such an exponential increase in stress
is unsustainable over long periods of time. Perturbation
analysis of the rigid-rod model reveals the critical stress
and critical breaking length, upon which the chain would
break after small perturbations, most likely at the center
linkage that sustains the highest stress. We further devel-
oped a phenomenological population-expansion model
that uses the findings from the rigid-rod model to make
computationally efficient estimations of the chain-mediated
expansion of a bacterial population over a long period of
time. The model shows that chain breakages prevent expo-
nential expansion of the bacterial population and set an up-
per bound on the expansion rate.

Importantly, our models provide several testable predic-
tions for the expansion dynamics of bacterial chains. The
perturbation analysis of the rigid-rod model predicts the
dependence of the critical breaking stress and length of
the chains on each of the key physical parameters (Fig. 4).
This analysis shows that the critical breaking stress is
most sensitive to variations in the cell length and angular
spring constant and less sensitive to the cell-growth rate
and drag coefficient. Interestingly, both the breaking stress
and the breaking length exhibit a biphasic dependence on
the cell length. These biphasic relations reveal a character-
istic cell length that minimizes the breaking stress and
length, though the biological significance of such a mini-
mum is unclear. The population-expansion model further
provides testable predictions for the estimated expansion
rate of the bacterial chain population as a function of the
physical parameters (Fig. 6). The estimated expansion rate
is sensitive to all four of the physical parameters and is
most sensitive to variations in the cell-growth rate. The
expansion rate depends on the cell length in a biphasic
arameter. (A) The expansion rate varies with respect to the cell length l0 in a

(C) The expansion rate increases as the angular spring constant kb increases.

h m increases. All plots were generated according to Eq. 6. The following

m, r ¼ 0.02 min-1, kb ¼ 500 pN mm, m ¼ 5 pN min/mm2, m ¼ 3.49, and

and correspond to J ¼ 40. The range for l0 in (A) was chosen to display

1 < J< 100. To see this figure in color, go online.
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manner similar to the critical breaking stress and length.
Note that since only expansion in one dimension is consid-
ered, the population-expansion model likely overestimates
the expansion rate—expansion in other dimensions in real-
ity would slow down the expansion but allow the bacterial
population to navigate larger space. Given the simplifica-
tions taken in the population-expansion model, its predic-
tions should be viewed in a more qualitative manner
rather than taken as a definitive quantification.

The model predictions suggest possible ways the bacte-
ria could evolve to enhance the cell-chain-mediated
motility and achieve a longer breaking length and/or higher
colony expansion rate. Based on the predictions given in
Fig. 4, the most efficient ways to delay chain breaks
include avoiding overly long cells and increasing the me-
chanical strength of the cell-cell linkages. Interestingly,
the latter strategy might have been exploited by
C. perfringens, B. megaterium, and B. subtilis through
lateral support between neighboring cell chains. Although
our model focuses on the dynamics of a single, isolated
chain, experimental observations show that chains of the
above bacteria often grow in parallel rather than in isola-
tion (Video S10), which likely evolves from the frequently
observed lateral adherence between segments of newly
broken chains over many cycles of breakages (Videos S2,
S3, S4, and S11). Such multi-chains are likely more resis-
tant to bending, as the chains are laterally fortified by their
neighbors. According to our model results, increasing the
angular spring constant of cell-cell linkages would increase
the critical breaking stress and breaking length (Fig. 4 C)
and foster faster population expansion (Fig. 6 C). With
lateral fortification, the chain is expected to be less prone
to bending, corresponding to an effective increase in the
spring constant of the cell-cell linkages. Applying concepts
from solid mechanics, we can perform a back-of-the-enve-
lope estimate of the bending rigidity of a multi-chain. In
the worst-case scenario, parallel chains freely slide relative
to their neighbors without any friction. In this situation, the
bending rigidity of the multi-chain, which roughly corre-
sponds to the effective angular spring constant keffb , would
scale linearly with the number of chains in parallel. In the
best-case scenario, the parallel chains would not slip rela-
tive to each other at all, essentially forming one solid struc-
ture. In this scenario, the bending rigidity would scale with
the number of chains in parallel cubed (61). Taken
together, in a situation with M chains growing in parallel,
the effective angular spring constant would scale with the
number of chains between keffb ¼ M and keffb ¼ M3. Based
on the results of the expansion model, the expansion rate
scales as _D ¼ k

1=2
b : Hence, the expansion rate of M chains

growing in parallel would scale between _D ¼ M1=2 and
_D ¼ M3=2. Our future investigations will detail the effects
of multiple chains growing together and quantify any ad-
vantages multi-chains may have as a mechanism for bacte-
rial population expansion.
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The mechanical rigid-rod model provides a powerful theo-
retical and computational framework for studying the cell-
chain-mediated bacterial motility. Compared with previous
models developed for the chain dynamics in B. subtilis
(52,53), our model provides the equations of motion for
each individual cell as the chain grows. These equations of
motion not only allow more efficient and stable simulations
for long-term chain dynamics than the classical mass-spring
models for moving rod-shaped bacteria (62,63) but also pro-
vide a convenient framework for mechanical-instability anal-
ysis (i.e., our analysis for the critical breaking stress). Most
strikingly, with the convenient assumption of synchronous
exponential growth, which does not affect the conclusion,
the nondimensionalized model practically depends on only
one free parameter,J. This eliminates the problem of param-
eter uncertainty, an issue that pesters many biological models,
and allows us to make highly reliable predictions on the rela-
tionship between the critical breaking stress/length and the
model parameters. Furthermore, formulating the equations us-
ingLagrangianmechanics allows for straightforward quantifi-
cation of the stress in each cell-cell linkage: the x and y
components of the stress are identical to the Lagrange multi-
pliers in the constraint conditions that represent the connec-
tions between adjacent cells. This forgoes an explicit
account of the unknown expansive force for cell growth and
cell division. Finally, the use of Lagrangian mechanics allows
the rigid-rod model to easily include additional conservative
or constraint forces in the future, e.g., in the study of chain-
chain interactions.

Note that the perturbation analysis used to quantify the
critical breaking stress is similar to the linear stability anal-
ysis for dynamical systems. While the system we present
here is continuously growing and lacks a true steady state,
the concepts are still applicable. In this analysis, a perfectly
straight chain was considered to be the steady state of the
system, since a chain with a perfectly straight initial condi-
tion will always remain perfectly straight as it grows. We
then considered a slightly kinked state as the small perturba-
tion in the linear stability analysis. A kinked chain will
experience one of two possible outcomes: 1) the steady state
is stable: the system will move toward the steady state, i.e.,
the kink flattens, or 2) the steady state is unstable: the sys-
tem will move away from the steady state, i.e., the kink ex-
acerbates, leading to chain breakage. The point at which the
system transitions between these two cases defines the crit-
ical stress of the system, similar to how the change of sign in
the Jacobian of an ordinary differential equation system
marks the bifurcation point where the steady state changes
from stable to unstable.

A number of our conclusions are consistent with the few
previous models for expanding bacterial chains developed
with different methods. For example, the parabolic stress
profile in Eq. 2. agrees with previous derivations in the con-
tinuum limit (53,64). In addition, the biphasic dependence
of the critical breaking stress and breaking length on the
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cell length and the decrease of critical breaking length with
increasing cell-substrate drag coefficient predicted by our
model are similar to those predicted by a previous chain-dy-
namics model that also resolves single cells (53). Because
the model in (53) involves different assumptions about the
cell-substrate interaction and assumes elastic interactions
between adjacent cells (unlike our model with hard con-
straints between adjacent cells), the predictions from the
two models bear quantitative differences.

It is interesting to compare the role of mechanical insta-
bilities in chain expansion versus in 2D biofilm expansion.
Mechanical instability in 2D biofilms leads to verticaliza-
tion (28–30), wrinkling (31–33), and 2D-to-3D transitions
(29,34,35). In other words, mechanical instability in the
2D biofilm gives rise to dynamics in the new vertical dimen-
sion. But in most cases, the growth of the biofilm in the ver-
tical direction is small comparedwith the in-plane direction,
and hence the biofilm will not compromise significantly in
its outward expansion. This is also true in chain expansion:
breaking of the chain leads to development of multi-chains,
as mentioned above. However, these multi-chain structures
tend to largely continue with directed one-dimensional
expansion, as the single chains are aligned in these struc-
tures. As such, while themechanical failure of cell-cell link-
ages may limit the efficacy of the chain-mediated sliding
motility, the one-dimensional tendency of the expansion
persists, which helps the bacteria spread faster over
distances.

Overall, our work highlights mechanical limitation as an
important consideration in cell-chain-mediated motility
and creates an extensible framework for future study of
suchmotility. Thismotilitymechanismnot only offers poten-
tial advantages in speed and energy efficiency but may also
be more widespread in bacteria than currently known, as it
can be enabled by a few genetic or phenotypic changes that
inhibit the final septation step of bacterial division. As strong
cell-cell connections are critical for effective cell-chain-
mediatedmotility, gram-positive bacteriamay bemore likely
to acquire this motility, as their thick peptidoglycan provides
a stiff material to form strong cell-cell linkages. Taken
together, studying this motility mechanism will likely open
up new opportunities to control pathogenicity and other phe-
notypes of gram-positive bacteria.
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