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Abstract

Circadian rhythms in a wide range of organisms are mediated by molecular mechanisms

based on transcription-translation feedback. In this paper, we use bifurcation theory to

explore mathematical models of genetic oscillators, based on Kim & Forger’s interpretation

of the circadian clock in mammals. At the core of their models is a negative feedback loop

whereby PER proteins (PER1 and PER2) bind to and inhibit their transcriptional activator,

BMAL1. For oscillations to occur, the dissociation constant of the PER:BMAL1 complex, bKd,

must be� 0.04 nM, which is orders of magnitude smaller than a reasonable expectation of

1–10 nM for this protein complex. We relax this constraint by two modifications to Kim &

Forger’s ‘single negative feedback’ (SNF) model: first, by introducing a multistep reaction

chain for posttranscriptional modifications of Per mRNA and posttranslational phosphoryla-

tions of PER, and second, by replacing the first-order rate law for degradation of PER in the

nucleus by a Michaelis-Menten rate law. These modifications increase the maximum allow-

able bKd to ~2 nM. In a third modification, we consider an alternative rate law for gene tran-

scription to resolve an unrealistically large rate of Per2 transcription at very low

concentrations of BMAL1. Additionally, we studied extensions of the SNF model to include a

second negative feedback loop (involving REV-ERB) and a supplementary positive feed-

back loop (involving ROR). Contrary to Kim & Forger’s observations of these extended mod-

els, we find that, with our modifications, the supplementary positive feedback loop makes

the oscillations more robust than observed in the models with one or two negative feedback

loops. However, all three models are similarly robust when accounting for circadian rhythms

(~24 h period) with bKd � 1 nM. Our results provide testable predictions for future experimen-

tal studies.
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Author summary

The circadian rhythm aligns bodily functions to the day/night cycle and is important for

our health. The rhythm originates from an intracellular molecular clock mechanism that

mediates rhythmic gene expression. It is long understood that transcriptional negative

feedback with sufficient time delay is key to generating circadian oscillations. However,

some of the most widely cited mathematical models for the circadian clock suffer from

problems of parameter ‘fragilities’. That is, sustained oscillations are possible only for

physically unrealistic parameter values. A recent model by Kim & Forger nicely incorpo-

rates the inhibitory binding of PER proteins to their transcription activator BMAL1, but

oscillations in the Kim-Forger model require a binding affinity between PER and BMAL1

that is orders of magnitude larger than observed binding affinities of protein complexes.

To rectify this problem, we make several physiologically credible modifications to the

Kim-Forger model, which allow oscillations to occur with more realistic binding affinities.

The modified model is further extended to explore the potential roles of supplementary

feedback loops in the mammalian clock mechanism. Ultimately, accurate models of the

circadian clock will provide better predictive tools for chronotherapy and chrono-phar-

macology studies.

Introduction

Most organisms experience perpetual day/night cycles and need to synchronize their physio-

logical functions with this potent external rhythm of light and temperature [1]. Endogenous

circadian rhythms meet this demand. These autonomous clock-like rhythms are driven by

molecular mechanisms that generate oscillations of ~24 h period through negative feedback

on gene expression [1–3]. Although the genes and proteins constituting the circadian clocks in

animals, plants and fungi are quite different, their essential interactions are remarkably similar.

In all cases, the clock mechanism features a ‘core’ negative feedback loop: A activates B acti-
vates C inhibits A. In mammals, this loop consists of transcriptional regulation involving six

genes: Per1/2, Cry1/2, Bmal1, and Clock [1–4]. For convenience, in this work we drop the dis-

tinction between the homologous pairs of proteins PER1/2 and CRY1/2. In this mechanism

(Fig 1), the heterodimeric transcription factor BMAL1:CLOCK activates Per transcription. Per
mRNA is then translated in the cytoplasm, where PER protein binds with CRY and enters the

nucleus. PER:CRY then binds with BMAL1:CLOCK to block its activation of Per transcription.

PER:CRY’s cycle of production, nuclear entry, auto-inhibition, and subsequent degradation is

widely acknowledged to be the source of circadian rhythmicity [5].

Over the past 50 years, many people have proposed mathematical models of circadian

rhythms [5–11]. In 1965, Brian Goodwin proposed a model of periodic enzyme synthesis

based on negative feedback on gene expression [12,13]. At the time, Goodwin was not attend-

ing to circadian rhythms, because nothing was known then about the negative feedback of

PER on its own synthesis. But his model was picked up later by Peter Ruoff [14–18] to explain

many characteristic features of circadian rhythms. Recently, the core negative feedback loop of

Goodwin’s model was extended with other feedback loops (as in Fig 1) to create more compre-

hensive and realistic models of circadian rhythms [19–21]. While all of these models have

much to commend, they suffer from a technical problem with the underlying ‘Goodwin

oscillator’.

In his model of periodic enzyme synthesis, Goodwin assumed that the end-product of a

metabolic pathway functioned as an inhibitor of expression of the gene encoding the first
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enzyme in the pathway. The inhibition was carried out by p molecules of the end-product

binding cooperatively to the transcription factor for the gene. In this scenario the rate of tran-

scription is given by a Hill function,
a1Kp

KpþZp, where Z = concentration of end-product, α1 = maxi-

mum rate of transcription, and K = end-product concentration at half-maximal rate of

transcription. In S1 Text, we define Goodwin’s model precisely, discuss its basic problem (for

the model to oscillate, p must be greater than 8, which is unreasonable), and we describe two

changes to Goodwin’s model that permit oscillations for smaller values of p.

One particularly interesting modification to Goodwin’s model was made by Jae Kyoung

Kim and Daniel Forger [20], who replaced Goodwin’s view—of negative feedback by coopera-

tive binding of a generic ‘repressor’ to a gene promoter—with their own model of

Fig 1. Three major feedback loops regulate the mammalian circadian clock. The core negative feedback loop is between PER:CRY and BMAL1:CLOCK.

The two sources of additional feedback are negative feedback between REV-ERB and BMAL1 and positive feedback between ROR and BMAL1. PER1/2,

CRY1/2, REV-ERBα/β and RORα/β are simplified to PER, CRY, REV-ERB and ROR, respectively. Solid lines indicate chemical reactions; the T-shaped

reactions indicate reversible binding of proteins to form multicomponent complexes. Dashed lines indicate regulatory signals (positive regulation = barbed

arrow, and negative regulation = blunt arrow).

https://doi.org/10.1371/journal.pcbi.1008340.g001
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stoichiometric binding of a repressor (PER:CRY) to an activator (BMAL1:CLOCK) of gene

expression. Some characteristic features of the two models have been compared in [22,23]. In

the following section, we describe the Kim-Forger model. Then, in the ‘Results’ section, we

show that, like Goodwin’s model, the Kim-Forger model also has a ‘parameter fragility’ prob-

lem. This analysis frames our proposals for more robust and realistic mathematical models of

circadian clocks.

Kim & Forger’s model

In 2012, Kim & Forger [20] presented a model of the negative feedback loop generating auton-

omous circadian rhythms in mammalian cells (Fig 2A). The Kim-Forger (KF) ODEs are:

Kim-Forger SNF Model.

d bM
dbt
¼ ba1

bAfree

bAT

� bb1
bM

dM
dt
¼ a

Afree

AT
� M ð1Þ

dbPc

dbt
¼ ba2

bM � bb2
bPc

dPc

dt
¼ M � Pc ð2Þ

dbP
dbt
¼ ba3

bPc �
bb3
bP

dP
dt
¼ Pc � P ð3Þ

bAfree ¼
1

2
½bAT �

bP � bK d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðbAT �
bP � bK dÞ

2
þ 4bK d

bAT

q

�

Afree ¼
1

2
AT � P � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � P � 1Þ
2
þ 4AT

q� �

ð4Þ

SNF stands for ‘single negative feedback’ (i.e., the core negative feedback loop involving

PER:CRY inhibition of BMAL1:CLOCK). As originally written, the KF model has three

dynamical variables: bM = [Per mRNA], bPc = [PER protein in the cytoplasm], bP = [PER protein

in the nucleus] (i.e., PER:CRY in the nucleus). The BMAL1:CLOCK transcription factor is

denoted by A; bAT is the total concentration of BMAL1:CLOCK in the nucleus, and bAfree is the

concentration of ‘free’ BMAL1:CLOCK (i.e., not bound to PER:CRY) in the nucleus. (The ‘hat’

on each variable indicates a concentration in nanomole/liter; andbt is time in hours.) The fac-

tor bAfree=
bAT is the probability that BMAL1:CLOCK is not bound to its repressor, PER:CRY. By

expressing the rate of transcription of Per mRNA to be proportional to bAfree=
bAT, Kim & Forger

are implicitly assuming that the total number of BMAL1:CLOCK dimers is large enough to

saturate the E-boxes on Per genes, and that PER:CRY binds equally well to BMAL1:CLOCK

dimers that are either bound or not bound to an E-box. Eq (4) is derived by solving the condi-

tion for equilibrium binding of BMAL1:CLOCK (A) and PER:CRY (P) to form an inactive

complex (C); namely, bK d
bC ¼ bAfree �

bP free ¼ ð
bAT �

bCÞðbP � bCÞ. The ba’s and bb’s are rate con-

stants with appropriate units of concentration and time. It is commonplace in these models to

assume that bb1 ¼
bb2 ¼

bb3, because this condition is most conducive to oscillations.

First of all, we cast the equations on the left side of (1)–(3) into dimensionless form on the

right side by defining dimensionless concentrations,

P ¼ bP=bK d; Pc ¼ ba3
bPc=
bbbK d; M ¼ ba2

ba3
bM=bb2bK d; A ¼ bA=bK d, and dimensionless time, t ¼ bbbt .

Furthermore, a ¼ ba1
ba2
ba3=
bb3bK d is the dimensionless rate of synthesis of Per mRNA (in a wild-
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Fig 2. Wiring diagrams for the three Kim-Forger models: SNF (a), NNF (b), and PNF (c). To simplify the models, several molecular species that do not

contribute significantly to the feedback loops are not explicitly represented. For example, in the SNF loop, CLOCK and CRY are not shown. In the NNF and PNF

loops, mRNAs encoding REV-ERB, ROR and BMAL1 are not shown, nor are the cytoplasmic forms of these proteins. Solid and dashed lines indicate reactions

and regulations, as in Fig 1. NF, negative feedback; PF, positive feedback.

https://doi.org/10.1371/journal.pcbi.1008340.g002
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type diploid cell). The other dimensionless parameter in Eqs (1)–(4) is AT ¼
bAT=

bK d = total

concentration of BMAL1 in the nucleus.

In addition to the SNF model, Kim & Forger proposed two extended models, in which the

core negative feedback loop involving PER and BMAL1 is supplemented with either an addi-

tional negative feedback from REV-ERB on transcription of the Bmal1 gene (called the NNF

model, Fig 2B) or an additional positive feedback from ROR on transcription of the Bmal1
gene (called the PNF model, Fig 2C). Evidences for these interactions are found in references

[24–28]. The ODEs of Kim & Forger’s ‘NNF’ and ‘PNF’ models are presented in S2 Text.

Notice that, in the SNF model, nonlinearity in the transcription term is due to tight stoi-

chiometric binding between PER and BMAL1, not (as in Goodwin’s equations) to cooperative

participation of nuclear PER in the regulation of Per gene expression. Consequently, the SNF

model circumvents the unreasonable cooperativity constraint (p> 8) of Goodwin’s model.

(Don’t confuse the Hill exponent, p, in Goodwin’s model with the concentration of nuclear

PER, P, in the KF model.)

While the SNF model appears to oscillate robustly and avoid Goodwin’s unrealistic con-

straint (p> 8), the SNF model has an unrealistic constraint of its own. To elaborate, we derive

an equation for oscillations to arise in the SNF model.

Results

Locus of Hopf bifurcations in Kim & Forger’s SNF model

The condition for a Hopf bifurcation in Eqs (1)–(4) is

8 ¼
a

AT

@Afree

@P

�
�
�
�

�
�
�
�
ss
¼

a

2AT
1þ

AT � Pss � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � Pss � 1Þ
2
þ 4AT

q

2

6
4

3

7
5 ð5Þ

where Pss, the steady-state solution of Eqs (1)–(4), satisfies the equation

Pss ¼
a

2AT
AT � Pss � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � Pss � 1Þ
2
þ 4AT

q� �

ð6Þ

Solving Eqs (5) and (6) simultaneously, we find that

8 ¼
Pss

1þ 2
AT
a

� �
Pss � AT � 1ð Þ

ð7Þ

and from Eq (6) we derive

Pss ¼
aðAT � 1Þ

2ðaþ ATÞ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
4ðaþ ATÞ

ðAT � 1Þ
2

s" #

ð8Þ

Substituting (8) into (7), we find, after a little algebra, the condition for a Hopf bifurcation:

F � a2 � CðATÞ � aþ OðATÞ ¼ 0 ð9Þ

where

F ¼ 49;CðATÞ ¼ 8ðA2

T � 30AT þ 1Þ;OðATÞ ¼ 64ATðAT þ 1Þ
2

ð10Þ

Solving the quadratic Eq (9), we obtain α as a function of AT, as plotted in Fig 3A. We must

locate a wild-type (WT) cell somewhere within the oscillatory domain, far enough from the

HB locus so that mutant cells overexpressing or under-expressing BMAL1 and PER are still

PLOS COMPUTATIONAL BIOLOGY Robustness of oscillations in models of the mammalian circadian clock

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008340 March 18, 2022 6 / 23

https://doi.org/10.1371/journal.pcbi.1008340


rhythmic. To this end, we propose the following ‘five-point criterion’ for choosing the values

of α and AT for a WT cell: if the point ðaWT;AWT
T Þ locates a WT cell on the bifurcation diagram,

then the points 1

2
aWT;AWT

T

� �
; aWT; 1

2
AWT

T

� �
; 2aWT;AWT

T

� �
; aWT; 2AWT

T

� �
should also lie within the

oscillatory domain. We introduce this constraint because: Bmal1+/− and Clock+/− cells, i.e.,

aWT; 1

2
AWT

T

� �
are rhythmic [29,30]; Per1−/−Per2+/+ and Per1+/+Per2−/− cells, i.e., 1

2
aWT;AWT

T

� �

are rhythmic [31–33]; mouse embryonic fibroblasts (MEFs) retain rhythmicity when co-over-

expressing both Bmal1 and Clock up to at least four-fold, see Fig 3C of [34]; and MEFs carrying

extra copies of Per1 or Per2, driven by a Per2-promoter, also retain rhythmicity, see Fig 6 of

[34]. We choose the smallest values of α, AT that satisfy these requirements, i.e., aWT ¼

2� 104;AWT
T ¼ 103 (see Fig 3A), to minimize the dimensionless concentrations of PER and

BMAL1 in order to maximize the value of bK d given observed values of bP and bA.

The oscillatory solution of the SNF model for this set of parameter values is plotted in Fig

3B. The dimensionless period of oscillation is 3.8, which would correspond to a 24 h rhythm if

bb = 0.16 h−1. Nuclear PER, P (t), executes nearly sinusoidal oscillations around a mean value of

1000. The oscillations of Per mRNA, on the other hand, are slightly non-sinusoidal. This prop-

erty of the model is not in contradiction to the evidently sinusoidal oscillations exhibited by

luciferase ‘reporter’ genes driven by Per2 promoters [35] because those observations were

made on populations of cells, which, in reality, cannot be perfectly synchronized. In S1 Fig we

show that the Per mRNA oscillations reported in Fig 3B, when averaged over a population of

cells with a 10% dispersion of phase, appear perfectly sinusoidal.

The oscillations in Fig 3B require [PER]nuclear� [BMAL1]total� 103bK d, i.e., that the dissoci-

ation constant of the PER:BMAL1 complex is much smaller than the concentrations of the

binding partners. To see why this is a problem, we must estimate bK d by fitting [PER] and

[BMAL1] to experimental data.

Fig 3. SNF (0L3) model. (a) Hopf bifurcation curve given by Eqs (9 and 10). ‘Five-point’ criterion: black circle, ‘homozygous diploid’ cell; white circles,

heterozygous diploid cells; red circles, tetraploid cells. (b) Oscillations for homozygous diploid cells (AT = 1000, α = 20,000), Period = 3.8; maxt PtotðtÞ = 2650.

https://doi.org/10.1371/journal.pcbi.1008340.g003
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Estimation of bPtot;
bAT; and bK d from experimental data

We can estimate bK d from the fact that there is a maximum of ~30,000 molecules of PER in a

mammalian cell [36]; hence, 3� 104 ¼ VN
bP þ VC

bPc ¼ VN
bK dP þ VC

bb
ba3

bK dPc. In the SNF model,

cytoplasmic PER is transported into the nucleus, so the rate at which PER molecules are lost from

the cytoplasm, bbbPc � VC, must equal the rate at which PER molecules are gained in the nucleus,

ba3
bPc � VN, assuming that there is not significant degradation of PER in the cytoplasm (for an

order-of-magnitude estimation, this is a reasonable simplifying assumption). In this case,
bb
ba3

¼
VN
VC

,

and 3� 104 ¼ VN
bK dðP þ PcÞ. From the simulation in Fig 3B, we find that Ptot = P+Pc�2500 at

the peak of its oscillation, and from BioNumbers [37], we find that the volume of a typical mam-

malian cell nucleus is ~500 fL. Hence, bK d �
1

2500

3�104

500fL

� �
1015fL=L

6�1014=nmol

� �
� 100nM

2500
� 0:04 nM. In this

case, bAT � 40 nM, and the total number of BMAL1 molecules in a nucleus of volume ~500 fL

would be ~12,000. The observed number of BMAL1 molecules in a cell is ~25,000 [36], which is

not too far off, considering that some fraction of BMAL1 molecules may not localize to the

nucleus or act as functional transcription factors.

Is bK d ¼ 0:04 nM a reasonable estimate of the affinity of PER for BMAL1? We expect the

time constant for dissociation of the PER:BMAL1 complex to be on the order of minutes (i.e.,

bkunbind > 10� 3 s� 1), because, if dissociation of the complex were slower, then the negative feed-

back of PER on BMAL1 would react sluggishly to changes in nuclear PER concentration. Fur-

thermore, Eq (4) implies equilibrium of PER-BMAL1 binding and would not hold with a

much slower dissociation constant. With this estimate of the dissociation rate constant, the

binding constant for the complex would have to be bkbind ¼
bkunbind

bK d

> 0:001s� 1

0:04nM ¼ 0:02 nM� 1s� 1 ¼

2� 107M� 1s� 1:However, protein-protein binding rate constants are typically on the order of

106 M−1s−1 [38]. So, we estimate that a physically realistic, minimum value for the dissociation

constant of the PER:BMAL1 complex is bK d;min � 1 nM, and we conclude that the dissociation

constant used in the SNF model is unrealistically small by at least 25-fold.

Fribourgh et al. [39] recently studied the docking of PER2:CRY1/2 to the core PAS domain

of BMAL1:CLOCK and measured bK d � 400 nM. This estimate of bK d is likely too large because

the authors used only partial protein sequences. Since the true value of bK d is likely between 1

and 100 nM, we will take bK d ¼ 10 nM as our benchmark.

To summarize, we find that circadian oscillations in KF’s original SNF model require a value

of the PER:BMAL1 dissociation constant, bK d � 0.04 nM (or smaller), that is 250-fold less than a

realistic estimate of bK d;est = 10 nM, and 25-fold less than the minimum value, bK d;min = 1 nM.

In this work we consider some realistic changes to the SNF model that increase the maxi-

mum permissible value of bK d for oscillations. In the process, we come up with some other sur-

prising reassessments of the KF model and its extensions.

Longer feedback loop and saturating PER degradation increase the

oscillatory robustness of the Kim-Forger SNF model

Our primary goal in modifying KF models is to alleviate the unreasonable constraint on bK d,

the dissociation constant of the PER:BMAL1 complex. To this end, we consider two changes

to the SNF model: first, increasing the number of dynamical species in the PER-BMAL1 nega-

tive feedback loop, and second, introducing a Michaelis-Menten rate law for the degradation
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of nuclear PER. These same changes are known to increase the robustness of Goodwin’s

model (as explained in S1 Text).

Longer feedback loop. In the SNF model, there is only one intermediate (Pc) between Per
mRNA (M) and nuclear PER protein (P). However, the primary gene transcript must be pro-

cessed and exported to the cytoplasm, where it is translated into nascent PER protein. PER

protein must be phosphorylated multiple times (PER has 10–20 phosphorylation sites [40,41])

and bound to CRY before it is transported into the nucleus. These steps insert a considerable

time lag between Per gene transcription and the negative feedback on BMAL1 activity. To

account for this time delay, we replace Pc in the SNF model by a sequence of species, P1, . . ., PJ

(note that the first few intermediates could be mRNA species), to obtain the modified ODEs:

dM
dt
¼ a �

Afree

AT
� M ð11Þ

dP1

dt
¼ M � P1 ð12Þ

dPj

dt
¼ Pj� 1 � Pj; j ¼ 2; . . . ; J ð13Þ

dP
dt
¼ PJ � P ð14Þ

where N = J+2 is the total length of the negative feedback loop, and Afree is still given by Eq (4).

This change lengthens the time between Per mRNA transcription and the negative feedback

signal generated by nuclear PER and consequently increases the oscillatory potential of the

negative feedback loop [42].

The longer feedback loop changes the condition for a Hopf bifurcation to arise in ODEs

(11)-(14): the number ‘8’ on the left-hand-side of Eq (5) is replaced by the number

SN ¼ sec p

N

� �� �N
. Following the same derivation as before, we find that Eq (9) determines α as a

function of AT at the Hopf bifurcation, provided that

F ¼ ðSN � 1Þ
2
;CðATÞ ¼ SNððAT þ 1Þ

2
� 4SNATÞ;OðATÞ ¼ SN

2ATðAT þ 1Þ
2

ð100Þ

In Fig 4A we show that, as N (the length of the feedback loop) increases, the domain of

oscillations in the (α, AT) parameter plane moves toward smaller values of α and AT. For exam-

ple, for N = 8, applying the five-point criterion, we place the WT cell at α = 200, AT = 40; see

Fig 4B. For this choice of parameter values, the oscillation is illustrated in Fig 4C: period = 15.5,

and the maximum value of Ptot = 540. Following a similar argument as that for the original

model with N = 3, we write 3� 104 ¼ VN
bP þ VC

bP1 þ
bP2 þ � � � þ

bPJ

� �
¼ VN

bK dP þ VC
bK d

bb
baJþ2

PJ þ . . .þ
bb J

ba Jþ2...a3

P0

� �

. Assuming the identities ba3 ¼ . . . ¼ baJþ2 ¼
bb (for a simple phos-

phorylation chain) and
bb
ba Jþ2

¼
VN
VC

(the conservation law for nuclear transport mentioned before,

with ba3 replaced by baJþ2), we rewrite the relation above as 3� 104 ¼ VN
bK dðP þ PJ þ . . .þ P1Þ

¼ VN
bK dPtot. (When there is no chance of misunderstanding, we write Ptot for maxt PtotðtÞ.) So,

in this case we might estimate that bK d = 100 nM/540� 0.2 nM. However, ‘Ptot’ includes Per
mRNA species as well as PER protein species. So a better estimate of Ptot might be ‘300’, in

which case bK d � 0.33 nM, which is still 30-fold smaller than our estimate of bK d;est = 10 nM for
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the binding of PER to BMAL1. Furthermore, in this case, we estimate bAT = 13 nM (4000 mole-

cules in a nucleus of volume 500 fL), which is perhaps too small compared to the observed

number of ~25,000 BMAL1 molecules.

Saturating degradation of nuclear PER. PER is degraded by proteasomes after it is poly-

ubiquitinated by the E3 ligase β-TrCP [43]. Because the rate of this enzyme-mediated reaction

likely saturates at large substrate concentration, it is reasonable to replace the linear kinetics

for degradation of nuclear PER in Eq (3) by a Michaelis-Menten rate law [43],

dP
dt
¼ PJ �

bmaxP
Km þ P

ð14Þ

βmax and Km are dimensionless parameters; in particular, Km ¼
bKm=

bK d; bmax ¼
bbmax=ð

bbbK dÞ.

This change also has the potential to increase the oscillatory robustness of the model. Intuitively,

the upper limit to the rate of PER degradation introduced by the Michaelis-Menten rate law

causes nuclear PER concentration to react sluggishly to changes in the rate of Per mRNA produc-

tion, which is another sort of ‘lag’ in the negative feedback loop.

To keep track of these changes, we introduce the notation SNF (0DN), where D denotes the

PER degradation rate law (L for linear or M for Michaelian), and N denotes the number of spe-

cies in the negative feedback loop. For example, the original KF model is denoted SNF (0L3).

The significance of the ‘0’ will become evident shortly.

For the case of ‘saturating degradation,’ we still scale all concentrations with respect to bK d, but

we can no longer derive a closed-form algebraic equation for the locus of Hopf bifurcations.

Instead, for N = 8, we searched the four-dimensional parameter space (α, AT, βmax, Km) for oscilla-

tions with the smallest value of maxt PtotðtÞ, subject to the constraints that Km > 1 and that the

model gives a reasonable domain of oscillations in the (α, AT) plane (i.e., large enough to satisfy

the five-point criterion). We found (see S3 Text) several different combinations of βmax and Km

that could satisfy these criteria with similar values of maxt PtotðtÞ, suggesting that the model is

robust with respect to these criteria. A typical combination is βmax = 3.8 and Km = 1, shown in Fig

5A. The five-point criterion is satisfied for ðaWT ¼ 20; AWT
T ¼ 16Þ, and the oscillations for this

case are shown in Fig 5B, for which Ptot = 70; discounting for mRNA species, we estimate Ptot =

50. Hence, bK d = 100 nM/50� 2 nM and bAT � 30 nM (9,000 molecules in a nucleus of volume

500 fL). This estimate of the theoretical value of bK d is now within our range of the probable

Fig 4. SNF (0LN) models. (a) Loci of Hopf bifurcations for N = 3, 4, 6, 8. (b) Value of bK d (expressed as 100nM/Ptot) as a function of AT and α for the SNF(0L8)

model. Contour lines mark constant values of bK d. Circles mark the ‘five-point’ criterion, as in Fig 3A. (c) Simulation of WT cell, SNF(0L8) with AT = 40, α =

200. Period = 15.5, maxt PtotðtÞ = 540, bK d ¼ 0:2 nM.

https://doi.org/10.1371/journal.pcbi.1008340.g004
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experimental value, 1 nM< bK d < 10 nM, and the estimate of the total number of BMAL1 mole-

cules per nucleus is acceptable, considering our uncertainty about the localization of BMAL1.

For further information, see S3 Text for notable patterns in the optimization results for

SNF (0M8).

A disturbing property of this SNF (0M8) model is that oscillations persist even as AT! 0,

which is clearly impossible because there can be no expression of the Per gene when BMAL1

Fig 5. SNF (0M8) model. (a) Bifurcation diagram for βmax = 3.8, Km = 1. Five-point criterion locates WT cell at the black dot. (b) Time-courses of M(t), P(t)

and Ptot(t) for WT cell: AT = 16, α = 20; Period = 30, maxt PtotðtÞ = 70.

https://doi.org/10.1371/journal.pcbi.1008340.g005

Fig 6. SNF (1LN) models. Loci of Hopf bifurcations for (a) SNF (1L3) and (b) SNF (1L8) models for KA = 1, 10 and 100. For comparison, the dashed lines (for

KA = 0) show contours for SNF (0LN). Rate law 1 makes little change to the oscillatory domain until KA > 10.

https://doi.org/10.1371/journal.pcbi.1008340.g006
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concentration is zero. The problem, of course, is that the rate law for Per transcription (rate/

Afree/AT) is valid only if BMAL1 saturates Per E-boxes, which clearly cannot be true as AT! 0.

To get around this problem, we propose a revised rate law for Per gene transcription.

A more realistic rate law for Per transcription does not affect the

robustness of the SNF model

We propose to replace the KF expression for the rate of Per gene transcription (Rate Law 0) by

a revised Rate Law 1 that is more realistic for small AT (see S4 Text):

Rate Law 0 :
dM
dt
¼ a

Afree

AT
� M ð15 � 0Þ

Rate Law 1 :
dM
dt
¼ a

Afree

KA þ AT
� M ð15 � 1Þ

For rate law 1, the maximum rate of transcription is a
AT

KAþAT
, which depends on how

strongly BMAL1:CLOCK binds to the E-box, as characterized by the dimensionless dissocia-

tion constant KA ¼
bKA=

bK d; and also, when AT becomes small, the transcription rate is propor-

tional to Afree/KA (not Afree/AT). Rate law 0 applies to the case in which binding between PER:

CRY and BMAL1:CLOCK is independent of the binding between BMAL1:CLOCK and E-box,

and BMAL1:CLOCK complexes saturate Per E-boxes. Rate law 1 relaxes the assumption of sat-

uration of Per E-boxes by BMAL1:CLOCK.

Modified Kim-Forger SNF equations. Taking all of the aforementioned changes into

account, we have (see S5 Text):

dM
dt
¼ a � F Afreeð Þ � M ð16Þ

dP1

dt
¼ M � P1 ð17Þ

dPj

dt
¼ Pj� 1 � Pj; j ¼ 2; . . . ; J ð18Þ

dP
dt
¼ PJ � G Pð Þ ð19Þ

Afree ¼
1

2
AT � P � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðAT � P � 1Þ
2
þ 4AT

q� �

ð20Þ

where FðAfreeÞ ¼
Afree=AT

Afree=ðKA þ ATÞ
; and GðPÞ ¼

P

bmaxP=ðKm þ PÞ
ð21Þ

((

In the notation SNF(TDN), T denotes the Per transcription rate law (0 or 1), and N = J
+ 2 = total length of the negative feedback loop.
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Models of form SNF (1LN) can be analyzed exactly as SNF(0LN), and the condition for a

Hopf bifurcation is Eq (9), F�α2−C(AT)�α+O(AT) = 0, where,

F ¼ ðSN � 1Þ
2
;C ATð Þ ¼ SN

AT þ KA

AT

� �

ðAT þ 1Þ
2
� 4SNAT

� �
;

O ATð Þ ¼ SN
2 ðAT þ KAÞ

2

AT
ðAT þ 1Þ

2
ð1000Þ

Solving this quadratic equation for α as a function of AT, we plot the locus of Hopf bifurca-

tions for N = 3 and 8 in Fig 6A and 6B. Clearly, this change in rate law makes little difference

in the robustness of oscillations for 1�KA�20. As KA increases further, the bifurcation locus

moves ‘up’ and Ptot increases, so the estimated value of bK d gets smaller.

For SNF (1MN) we have no closed-form algebraic equation for the locus of Hopf bifurca-

tions, so as before, we set N = 8 and searched the five-dimensional parameter space (α, AT,

βmax, Km, KA) for oscillations with the smallest value of maxt PtotðtÞ, subject to the constraints

a 2 ½10� 2; 103�;AT 2 ½10� 2; 102�; bmax 2 ½10� 2; 103�;Km 2 ½1; 102�;KA 2 ½1; 102�;

and that the amplitude of oscillation of Ptot(t) be larger than 0.5, where ampl ¼ max� min
maxþmin. The ampli-

tude constraint is to select for ‘robust’ oscillations. A summary of these calculations is provided in

S3 Text. Briefly, we found ~1000 parameter sets with maxt PtotðtÞ = 32.3 ± 3.5 and

Period = 20.7 ± 1.1. Then we checked for parameter sets that satisfy the ‘five-point criterion’.

Results of a typical parameter set (βmax = 5, Km = 5.5 and KA = 20) are illustrated in Fig 7A and

7B. In this case, maxt PtotðtÞ = 75, which is larger than ‘33’ because the WT cell ðaWT ¼

50;AWT
T ¼ 20Þmust be centered in the oscillatory domain of Fig 7A. Discounting Ptot for mRNA

species, we estimate maxt PtotðtÞ � 40. Hence, bK d = 2.5 nM and bAT = 50 nM (~15,000 molecules

of BMAL1 per nucleus). We conclude that, although rate law 1 is more accurate than rate law 0

for values of AT� KA, it does not improve significantly on our estimates of bK d and bAT.

Fig 7. SNF (1M8) model. (a) Bifurcation diagram for βmax = 5, Km = 5.5, KA = 20. Five-point criterion locates WT cell at the black dot. (b) Time-courses of M
(t), P(t) and Ptot(t) for WT cell: AT = 20, α = 50; Period = 27, maxt PtotðtÞ = 75.

https://doi.org/10.1371/journal.pcbi.1008340.g007
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Adding a negative feedback loop involving REV-ERB does not increase the

robustness of circadian oscillations

Next, we explore Kim & Forger’s NNF model (see S2 Text), with modified rate laws for gene

transcription. For the rates of transcription of Per and Rev-erb genes governed by BMAL1:

CLOCK binding to E-boxes, we use our Rate Law 1, Eq (15-1). For the transcriptional repres-

sion of the Bmal1 gene by REV-ERB (variable bV ), we replace Kim & Forger’s function γ/V by

bAMAX �
bKV=ð

bV þ bKVÞ, where bKV is the dissociation constant for REV-ERB binding to the pro-

moter (RORE) of the Bmal1 gene. This new rate law remedies an issue in KF’s original NNF

model, for which the rate of synthesis of Bmal1 mRNA!1 as V!0.

Modified Kim-Forger NNF model. Eqs (16)–(21) plus

dbAT

dbt
¼ bd bAMAX

bKV

bV þ bKV

� bAT

" #
dAT

dt
¼ d AMAX

1

V þ 1
� AT

� �

ð22Þ

dbV
dbt
¼ bd bVMAXFðbAfreeÞ �

bV
h i dV

dt
¼ d VMAXFðAfreeÞ � V½ � ð23Þ

The dimensional equations on the left-hand-side are cast into dimensionless form with the

same definitions used in Eqs (1)–(4), plus d ¼
bd
bb

, AMAX ¼
bAMAX

bK d

;V ¼ bV
bKV

;VMAX ¼
bVMAX

bKV

:

To compare NNF to SNF, we must adopt some constraints on the new parameters. First of

all, from Narumi et al. [36], we find that the maximum number of REV-ERB molecules during

the circadian rhythm in mouse liver cells is 50,000. If all molecules are confined to a nucleus of

500 fL, then 50;000 molec
500 fL ¼ 167 nM ¼ bKV �maxt VðtÞ. For bKV to be greater than, say, 10 nM, we

will constrain VMAX so that maxt VðtÞ < 10. We continue to insist that the relative amplitude

of Ptot(t) be> 0.5, and, in addition, we constrain AMAX so that the relative amplitude of A(t)
over an oscillation is> 0.2 [36]. We also require that maxt ATðtÞ=maxt PtotðtÞ be as close to 1

as possible (total numbers of BMAL1 and PER proteins are close [36]). Subject to these con-

straints, we search over the available parameter space

a 2 ½10� 2; 103�;AMAX 2 ½10� 2; 103�; bmax 2 ½10� 2; 103�;Km 2 ½1; 102�;KA 2 ½1; 102�;

Vmax 2 ½10� 2; 102�; d 2 ½10� 2; 102�

to minimize the objective function maxt PtotðtÞ; i.e., to maximize the value of bK d.

A summary of these calculations is provided in S3 Text. Briefly, we found ~1000 parameter

sets with maxt PtotðtÞ � 91.7 ± 24.5 and Period = 22.7 ± 2.1. Again, after checking for parameter

sets that satisfy the ‘five-point criterion’, we plot results of a typical parameter set (βmax = 4.5, Km

= 2.5, KA = 3.7, VMAX = 22 and δ = 0.17) in Fig 8. For the WT cell ðaWT ¼ 30;AWT
MAX ¼

30Þ;maxt PtotðtÞ = 64 and avg(AT) = 9. Discounting for mRNA species, maxt PtotðtÞ = 35, bK d = 3

nM and avgðbATÞ = 27 nM (~8,000 molecules of BMAL1 per nucleus). We conclude that NNF

(1M8) is not more robust than SNF(1M8), nor does it improve our estimates of bK d and bAT.

An additional positive feedback loop involving ROR increases the

robustness of circadian oscillations at a cost

Next, we explore Kim & Forger’s PNF model, with similarly modified rate laws for gene transcrip-

tion: Eq (15-1) for the rates of transcription of Per and Ror genes, and bAMAX � ðεbKR þ
bRÞ=ðbR þ
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bKRÞ for the rate of transcription of Bmal1 by ROR (variable bR). In the latter rate law, bKR is the dis-

sociation constant for ROR binding to the RORE promoter and ε is the fractional reduction in

Bmal1 expression when bR ¼ 0. This new rate law remedies an issue in KF’s original PNF model,

for which the rate of Bmal1 transcription does not behave appropriately as R!1 or R!0.

Modified Kim-Forger PNF model. Eqs (16)–(20) plus

dbAT

dbt
¼ bd bAMAX

εbKR þ
bR

bR þ bKR

� bAT

" #
dAT

dt
¼ d AMAX

εþ R
Rþ 1

� AT

� �

ð24Þ

dbR
dbt
¼ bd bRMAXFðbAfreeÞ �

bR
h i dR

dt
¼ d RMAXFðAfreeÞ � R½ � ð25Þ

The dimensional equations on the left-hand-side are cast into dimensionless form with the

same definitions used earlier, plus R ¼ bR
bKR

;RMAX ¼
bRMAX

bKR

:

To compare PNF to SNF, we adopt the following constraints. First of all, since the maxi-

mum number of ROR molecules during the circadian rhythm in mouse liver cells is 25,000

[36], we estimate that 25;000 molec
500 fL ¼ 83 nM ¼ bKR �maxt RðtÞ, and consequently we constrain

RMAX so that maxt RðtÞ < 5. We continue to insist that the relative amplitudes of Ptot(t)
be> 0.5 and of A(t) be> 0.2, and that maxt ATðtÞ=maxt PtotðtÞ be as close to 1 as possible.

Subject to these constraints, we search over the available parameter space

a 2 ½10� 2; 103�;AMAX 2 ½10� 2; 103�; bmax 2 ½10� 2; 103�;Km 2 ½1; 102�;KA 2 ½1; 102�;

Rmax 2 ½10� 2; 102�; d 2 ½10� 2; 102�; ε 2 ½10� 4; 10� 1�

to minimize the objective function maxt PtotðtÞ.

Fig 8. NNF (1M8) model. (a) Bifurcation diagram for βmax = 4.5, Km = 2.5, KA = 3.7, VMAX = 22, δ = 0.17. Five-point criterion locates WT cell at the black dot.

(b) Time-courses of AT(t), V(t), M(t), P(t) and Ptot(t) for WT cell: AMAX = 30, α = 30; Period = 25, maxt PtotðtÞ = 64, avg(AT) = 9.

https://doi.org/10.1371/journal.pcbi.1008340.g008
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A summary of these calculations is provided in the S3 Text. Briefly, we found ~1000 param-

eter sets with maxt PtotðtÞ � 3.6 ± 2.2 and Period = 43.9 ± 25.4. Again, after checking for

parameter sets that satisfy the ‘five-point criterion’, we plot results of a typical parameter set

(βmax = 1.85, Km = 8.5, KA = 35, RMAX = 6.2, ε = 0.0003 and δ = 8) in Fig 9. For the WT cell

ðaWT ¼ 10;AWT
MAX ¼ 15Þ;maxt PtotðtÞ = 12 and avgðbATÞ = 3. Discounting for mRNA species,

maxt PtotðtÞ = 7; hence, bK d = 15 nM and avgðbATÞ � 45 nM (i.e., 13,000 molecules of BMAL1

per nucleus), which are quite reasonable estimates. Clearly, the PNF (1M8) exhibits more

robust oscillations than the SNF(1M8) and NNF(1M8) models and is consistent with bK d � 10

nM, but the oscillation waveforms are unbelievable. For about half of the oscillatory period, R
(t), AT(t) and M(t) are� 0, which is inconsistent with observations [36].

The three 1M8 models are about equally robust with respect to circadian

oscillations

In Fig 10 we redraw the bifurcation plots for the ‘1M8’ models with colors to indicate oscil-

latory periods. (For each model, we choose a value of bb1, as indicated in the legend, to convert

from dimensionless period τ to a period of ~24 h given the wild-type parameter values, speci-

fied in the legend.) For SNF and NNF models the oscillatory period varies over a range of

~22–25 h. The PNF model, though very robust in terms of oscillatory potential, is restricted in

exhibiting circadian oscillations (say, 23–26 h) to two regions of expression of BMAL1 (param-

eter AMAX) and PER (parameter α); namely, a broad band around the diagonal α + 16�AMAX�

8000, which is clearly seen in Fig 10C, and a triangular region α + AMAX < 35 (for 5< AMAX

< 35, 5< α< 35) seen in Fig 10D. Our WT simulation (Fig 9) is found in the ‘triangular

region.’

Oscillations in the ‘broad band’ (results not shown), although they are consistent with 1 nM

< bK d < 10 nM, predict average concentrations of nuclear BMAL1 that are much too small

(< 1 nM = 300 molecules per nucleus). Indeed, maxt ATðtÞ is so small despite AMAX being

Fig 9. PNF (1M8) model. (a) Bifurcation diagram for βmax = 1.85, Km = 8.5, KA = 35, RMAX = 6.2, ε = 0.0003, δ = 8. Five-point criterion locates WT cell at the

black dot. (b) Time-courses of M (t), P(t), AT(t), R(t), and Ptot(t) for WT cell: AMAX = 15, α = 10. Period = 31, maxt PtotðtÞ = 12, avg (AT) = 3.

https://doi.org/10.1371/journal.pcbi.1008340.g009
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very large, because the concentration of ROR in this region is very small (maxt RðtÞ < 0:003)

and dAT/dt�AMAX(ε+R)<0.003�AMAX. We note, in passing, that robust oscillations and a

broad distribution of periods, as we see in the PNF model, is a common feature of models that

combine positive and negative feedback loops [42,44].

We can quantify the ‘robustness’ of the 1M8 models by measuring the area of ‘circadian

oscillations’ in the (AT, α) or (AMAX, α) plane. To standardize the area, we measure AT (AMAX)

and α as multiples of their WT values, as given in the figure legend. In these units, the areas are

NNF:SNF:PNF = 6.6:4:2. These ratios are probably not significantly different in terms of what

might possibly be measured experimentally.

In S2 Fig we explore the dependence of oscillatory period on fold-changes in BMAL1

expression (i.e., co-expression of BMAL1 and CLOCK in experiments). SNF (0LN) models are

quite insensitive to fold-changes in BMAL1 expression: the change in period is ~1 h across the

range of oscillations. SNF (0M8), SNF (1M8) and NNF (1M8) models are more sensitive, with

a change of 5–8 h across the range. Apparently, the saturating rate law for nuclear PER

Fig 10. Distributions of oscillatory period for 1M8 models. (a) SNF (1M8) for βmax = 5, Km = 5.5, KA = 20; WT cell at AT = 20, α = 50, bb1 ¼ 1:125 h� 1
, so

that WT cell exhibits 24 h rhythm. (b) NNF (1M8) for βmax = 4.5, Km = 2.5, KA = 3.7, VMAX = 22, δ = 0.17; WT cell at AT = 30, α = 30, bb1 ¼ 1 h� 1
, so that WT

cell exhibits 25 h rhythm. (c) PNF (1M8) for βmax = 1.85, Km = 8.5, KA = 35, RMAX = 6.2, ε = 0.0003, δ = 8; WT cell at AMAX = 15, α = 10, bb1 ¼ 1:3 h� 1
, so that

WT cell exhibits 24 h rhythm. (d) Lower left corner of panel c.

https://doi.org/10.1371/journal.pcbi.1008340.g010
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degradation is responsible for the increased sensitivity to variable expression of BMAL1. PNF

(1M8) exhibits very long periods of oscillation for large values of AMAX, as noted, and is com-

parably sensitive (ΔT� 8 h) over a restricted range of BMAL1 overexpression (up to 2.5 x WT

level). When Lee et al. constitutively overexpressed BMAL1:CLOCK dimers (~ four-fold) in

MEF cells, they observed rhythms of reduced amplitude but normal 24 h period (see their Fig

3C) [34]. This observation is within the limits predicted by models with linear degradation of

nuclear PER but is not consistent with the assumption of saturating degradation.

S3 Fig shows the trends with respect to PER overexpression (e.g., co-expression of PER2

and CRY1 in experiments). SNF (0L8) is quite insensitive (ΔT� 1 h), whereas SNF (0M8) and

SNF(1M8) are more sensitive (ΔT� 4.5 h). NNF (1M8) and PNF (1M8) are even more sensi-

tive to overexpression of PER (8–10 h). These trends are subject to experimental investigation

by overexpression of BMAL1:CLOCK and PER2:CRY1.

Discussion

The Kim-Forger (KF) models of mammalian circadian rhythms (called SNF, NNF and PNF)

are appealing in many respects, but they rely on an unrealistic requirement for robust oscilla-

tions, namely that the equilibrium dissociation constant of the PER:CRY::BMAL1:CLOCK

complex must be bK d < 0.04 nM, which is 250-fold smaller than a reasonable value for the dis-

sociation of the PER:CRY::BMAL1:CLOCK complex. This difficulty can be ameliorated by

lengthening the core negative feedback loop between Per mRNA transcription and PER:CRY

inactivation of BMAL1:CLOCK (the transcription factor driving Per expression), and/or by

implementing a Michaelis-Menten rate law for the degradation of nuclear PER. The KF mod-

els were further modified by introducing an alternative rate law for BMAL1:CLOCK-mediated

transcription of clock genes (Per, Rev-erb and Ror) to correct a problem at low expression of

the Bmal1 gene, and by providing more accurate rate laws for the effects of REV-ERB and

ROR on Bmal1 expression.

With these modifications, we find (Fig 7) that the SNF (1M8) model can exhibit oscillations

for bK d � 2 nM. From biophysical considerations and in vitro measurements, we estimate that

bK d;est � 10 nM, so the model constraint is not too far off from expectations. For bK d ¼ 2 nM,

the SNF (1M8) model oscillates over a 14-fold range of total BMAL1 concentrations, 10 nM<

bAT < 140 nM. For bAT = 30 nM, the corresponding number of BMAL1 molecules in a nucleus

of volume 500 fL would be 30 nM� 500 fLð Þ 6�1014

1 nmol

� �
10� 15L

1 fL

� �
¼ 9; 000, which is about one-

third the observed number (~25,000) of BMAL1 molecules in a mammalian cell [36]. If the

remaining BMAL1 molecules are dispersed through the cytoplasm of volume 5000 fL, the cyto-

plasmic concentration of BMAL1 would be about one-tenth the nuclear concentration, which

is not unreasonable for a ‘nuclear’ protein such as BMAL1. Furthermore, the model focuses on

BMAL1:CLOCK complexes that bind E-boxes to regulate gene expression. BMAL1 in this

form may account for only a fraction of total BMAL1, if BMAL1, like PER, undergoes multi-

step post-translational modifications. Indeed, both BMAL1 and CLOCK are known to be

phosphorylated at multiple sites, which affects their stability and nuclear accumulation, as well

as activity of the BMAL1:CLOCK complex [45–47].

Replacing the linear rate law for nuclear PER degradation by a Michaelis-Menten rate law

causes a dramatic change in the sensitivity of oscillation to the expression levels of Per2 and

Bmal1 (compare Figs 4A and 5A). Models with linear PER degradation, e.g., SNF (0L8), pre-

dict that oscillations are possible over an ever broadening range of rates of Per and Bmal1
expression; e.g., 1:8 < a� 50

AT � 10
< 75 (approximately) in Fig 4A. For a comparable model with

Michaelis-Menten degradation, SNF (0M8), the oscillatory domain is bounded by maximal
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rates of expression: α< 45 and AT < 45 in Fig 5A. These contrasting results provide a testable

prediction for future experimental exploration. By overexpressing Per/Cry genes and/or

Bmal1/Clock genes under control of their normal (regulated) promoters (i.e., by manipulating

α and AT), one could test whether nuclear PER degradation operates in a saturated (Michaelis-

Menten) or unsaturated (linear) manner, which would be difficult to measure directly in vivo.

In the same experiment, by measuring the dependence of oscillation period on α and AT (i.e.,

on fold-changes in expression of Per/Cry and Bmal1/Clock), one could investigate a second

property of our models (S2 and S3 Figs) that period length is much more sensitive to α and to

AT in models with saturated degradation than in models with linear degradation of nuclear

PER.

The single negative feedback loop (SNF), whereby PER inhibits its own synthesis, can be

supplemented with an auxiliary positive feedback from ROR (PNF) or a second negative feed-

back from REV-ERB (NNF) on the synthesis of BMAL1. For their versions of these three mod-

els (0L3 versions), Kim & Forger observed a ‘robustness trend’ NNF > SNF > PNF, in terms

of the size of the oscillatory domain in parameter space. For our versions of these models, we

find that SNF and NNF have similar oscillatory domains, while PNF is much more robust.

However, if ‘robustness’ is defined as the size of the domain of circadian oscillations (22–26 h)

in parameter space (fold-changes in expression of PER:CRY and BMAL1:CLOCK complexes),

then the SNF(1M8), NNF(1M8) and PNF(1M8) models are nearly equally robust.

Our models could be employed in the future to explore other features of the mammalian

circadian clock. For instance, following the lead of Kim and colleagues [48,49], we could

address our models to the circadian clock’s temperature-compensation and/or phase-shifting

properties. Adding these key features may answer some remaining questions about the behav-

iors of these models. Another question that could be addressed with these models is the func-

tion of an anti-sense transcript of the PER2 gene [50]. Furthermore, these models could be

applied in chronopharmacology and chronotherapy studies [51]. One such application would

be modeling PER2’s interaction with the tumor suppressor protein p53 in stressed (e.g., DNA

damage) cells compared to unstressed cells [52,53].

Materials and methods

The ‘wiring diagrams’ (molecular mechanisms) of our models (see Fig 2) were converted into

nonlinear ODEs, as described in the main text. The ODEs were solved by standard numerical

algorithms, as implemented in MATLAB and XPP-AUTO. Software codes are provided in S1

and S2 Codes for XPP and MATLAB, respectively. Bifurcation diagrams were computed using

XPP-Auto, which may be downloaded from www.math.pitt.edu/~bard/xpp/xpp.html. To opti-

mize the parameters of SNF (0M8), SNF (1M8), NNF (1M8) and PNF (1M8) models, we used

MATLAB’s simulated annealing method (‘simulannealbnd’) within physiologically reasonable

ranges. The parameter ranges and optimization criteria we used for each model and the corre-

sponding cost functions are provided in S3 Text.

Supporting information

S1 Fig. Bulk average of asymmetric oscillatory trajectories appears sinusoidal. Thin colored

lines: M(t) trajectory in Fig 3 with a random shift in phase. The random phase was drawn from

a normal distribution with zero mean and standard deviation of 0.5 time unit (~ 1/10 of the

oscillation period). Thick black line: average of the colored trajectories. Skewness of a single

colored trajectory and the average trajectory is 0.42 and 0.17, respectively. Skewness is defined

as S ¼ hðM � hMiÞ3i=hðM � hMiÞ2i
3
2.

(DOCX)
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S2 Fig. Dependence of oscillation period on level of expression of Bmal1, either AT for SNF

models or AMAX for NNF and PNF models. In the insets we record a measure of the relative

change in period, D ¼
Tmax� Tmin
ðTmaxþTminÞ=2

, across the range of gene expression, and the absolute change

(in hours): ΔT = Δ�24 h. For PNF(1M8) we limit the increase in gene expression to 2.5 x WT

value of AMAX.

(DOCX)

S3 Fig. Dependence of oscillation period on level of expression of Per, i.e., parameter α. Δ
and ΔT, the relative and absolute changes in period over the range of gene expression, are

defined in the legend to S2 Fig. For PNF(1M8) we limit the increase in gene expression to 2.5 x

WT value of α.

(DOCX)

S1 Table. Definitions of the dynamical variables in the models.

(DOCX)

S2 Table. Definitions of the dimensionless parameters in the models.
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XPP-AUTO.
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